Suppr超能文献

基于遗传算法和神经网络的生物废水处理中基于人工智能的氮氧化物减排新方法。

Novel approach for AI-based NO emission reduction in biological wastewater treatment relying on genetic algorithms and neural networks.

作者信息

Freyschmidt Arne, Köster Stephan

机构信息

Institute of Sanitary Engineering and Waste Management, Leibniz University Hannover, Welfengarten 1, 30167 Hannover, Germany E-mail:

Institute of Sanitary Engineering and Waste Management, Leibniz University Hannover, Welfengarten 1, 30167 Hannover, Germany.

出版信息

Water Sci Technol. 2025 May;91(10):1172-1184. doi: 10.2166/wst.2025.060. Epub 2025 May 6.

Abstract

The potential of measurement-based control strategies for achieving lower NO emissions in biological wastewater treatment is limited due to strong temporal variations in NO emissions and a lack of measurement data regarding influencing parameters. To address this issue, a novel artificial intelligence (AI)-based process optimization method for minimizing NO emissions was developed, relying on a genetic algorithm to automatically determine the control settings associated with minimum NO emissions for an individual operating situation. The genetic algorithm employs a validated prediction model to evaluate the effect of individual control parameter sets on NO emissions and other operating targets. For this purpose, neural networks were trained using data generated with a mechanistic model. This approach is beneficial in practical applications as prediction networks could be successfully trained even if only limited data is available. The developed method also includes a classification algorithm to check the reliability of the AI-suggested control strategy. Two modeling studies confirm that the practical application of the developed methodology holds the potential for a considerable reduction in emissions (43% or 1,588 t COe/a) while still achieving the required effluent quality. Operational settings are identified in less than 2 minutes so that the approach can be applied on a large scale.

摘要

由于生物废水处理中NO排放的强烈时间变化以及缺乏关于影响参数的测量数据,基于测量的控制策略在实现更低NO排放方面的潜力有限。为了解决这个问题,开发了一种基于新型人工智能(AI)的用于最小化NO排放的过程优化方法,该方法依靠遗传算法自动确定与单个运行情况的最低NO排放相关的控制设置。遗传算法采用经过验证的预测模型来评估各个控制参数集对NO排放和其他运行目标的影响。为此,使用由机理模型生成的数据训练神经网络。这种方法在实际应用中是有益的,因为即使只有有限的数据可用,预测网络也能成功训练。所开发的方法还包括一种分类算法,以检查AI建议的控制策略的可靠性。两项建模研究证实,所开发方法的实际应用有可能大幅减少排放(43%或1588 t COe/a),同时仍能达到所需的出水水质。运行设置在不到2分钟内即可确定,因此该方法可大规模应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验