Suppr超能文献

宏转录组学数据的整合提高了微生物群落代谢模型的预测能力。

Integration of metatranscriptomics data improves the predictive capacity of microbial community metabolic models.

作者信息

Hsieh Yunli Eric, Tandon Kshitij, Verbruggen Heroen, Nikoloski Zoran

机构信息

Systems Biology and Mathematical Modeling Group, Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany.

Bioinformatics Department, Institute of Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany.

出版信息

ISME J. 2025 Jan 2;19(1). doi: 10.1093/ismejo/wraf109.

Abstract

Microbial consortia play pivotal roles in nutrient cycling across diverse ecosystems, where the functionality and composition of microbial communities are shaped by metabolic interactions. Despite the critical importance of understanding these interactions, accurately mapping and manipulating microbial interaction networks to achieve specific outcomes remains challenging. Genome-scale metabolic models (GEMs) offer significant promise for predicting microbial metabolic functions from genomic data; however, traditional community GEMs typically rely on species abundance information, which may limit their predictive accuracy due to the absence of condition-specific gene expression or protein abundance data. Here, we introduce the Integration of Metatranscriptomes Into Community GEMs (IMIC) approach, which utilizes metatranscriptomic data to construct context-specific community models for predicting individual growth rates and metabolic interactions. By incorporating metatranscriptomic profiles, which reflect both gene expression activity and partially encode abundance information, IMIC could predict condition-specific flux distributions that enable the investigation of metabolite interactions among community members. Our results show that growth rates predicted by IMIC correlate strongly with relative as well as absolute abundance of species and offer a streamlined, automated procedure for estimating the single intrinsic parameter. Specifically, IMIC results in improved predictions of measured metabolite concentration changes compared with other approaches in our case study. We further demonstrate that this improvement is driven by the network-wide adjustment of flux bounds based on gene expression profiles. In conclusion, the IMIC approach enables the accurate prediction of individual growth rates and improves the model performance of predicting metabolite interactions, facilitating a deeper understanding of metabolic interdependencies within microbial communities.

摘要

微生物群落联合体在不同生态系统的养分循环中发挥着关键作用,其中微生物群落的功能和组成由代谢相互作用塑造。尽管理解这些相互作用至关重要,但准确绘制和操纵微生物相互作用网络以实现特定结果仍然具有挑战性。基因组规模代谢模型(GEMs)为从基因组数据预测微生物代谢功能提供了巨大潜力;然而,传统的群落GEMs通常依赖物种丰度信息,由于缺乏特定条件下的基因表达或蛋白质丰度数据,这可能会限制其预测准确性。在此,我们介绍了将宏转录组整合到群落GEMs中的方法(IMIC),该方法利用宏转录组数据构建特定背景的群落模型,以预测个体生长速率和代谢相互作用。通过纳入反映基因表达活性并部分编码丰度信息的宏转录组图谱,IMIC可以预测特定条件下的通量分布,从而能够研究群落成员之间的代谢物相互作用。我们的结果表明,IMIC预测的生长速率与物种的相对丰度和绝对丰度都密切相关,并提供了一种简化的自动化程序来估计单一内在参数。具体而言,在我们的案例研究中,与其他方法相比,IMIC能更准确地预测实测代谢物浓度变化。我们进一步证明,这种改进是由基于基因表达谱的通量边界的全网络调整驱动的。总之,IMIC方法能够准确预测个体生长速率,并提高预测代谢物相互作用的模型性能,有助于更深入地理解微生物群落内的代谢相互依存关系。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/affa/12203112/4ba5969c6b19/wraf109f3.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验