Suppr超能文献

来自肺髓细胞的单细胞RNA测序数据的跨疾病整合揭示了模型中的肿瘤相关巨噬细胞特征。

Cross-disease integration of single-cell RNA sequencing data from lung myeloid cells reveals TAM signature in model.

作者信息

Pinto Catarina, Widawski Jakub, Zahalka Sophie, Thaler Barbara, Schuster Linda C, Lukowski Samuel W, Ramírez Fidel, Tirapu Iñigo

机构信息

Oncology Research, Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria.

Computational Innovation, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany.

出版信息

Oncoimmunology. 2025 Dec;14(1):2502278. doi: 10.1080/2162402X.2025.2502278. Epub 2025 May 31.

Abstract

Advancements in single-cell RNA sequencing (scRNA-seq) have revealed the phenotypic and functional diversity of tumor-associated macrophages (TAMs), identifying specific populations that directly impact the antitumor response. However, despite the recognition of TAMs as promising therapeutic targets for cancer treatment, research is hindered by the lack of validated human preclinical models. Here, we applied scRNA-seq to a 3D human cell-based model comprising tumor cell line-derived spheroids, cancer-associated fibroblasts and primary monocytes, a setup widely used in immuno-oncology research. Integration of our data with publicly available patient-derived datasets showed that the macrophages in this model share phenotypic characteristics with the pro-angiogenic and pro-fibrotic SPP1 TAM population recently found across multiple cancer types and inflammatory lung diseases. This population was linked to aspects of disease progression and associated with poor prognosis in several tumor indications, highlighting the need for relevant models enabling its study as an immunotherapy target. Our research validates the use of a 3D human cell-based culture as a more in vivo-relevant model and enables the preclinical testing of novel macrophage-targeting drugs in a human disease-relevant setup.

摘要

单细胞RNA测序(scRNA-seq)技术的进步揭示了肿瘤相关巨噬细胞(TAM)的表型和功能多样性,确定了直接影响抗肿瘤反应的特定细胞群。然而,尽管人们认识到TAM是癌症治疗中很有前景的治疗靶点,但由于缺乏经过验证的人类临床前模型,相关研究受到了阻碍。在此,我们将scRNA-seq应用于一种基于三维人体细胞的模型,该模型由肿瘤细胞系来源的球体、癌症相关成纤维细胞和原代单核细胞组成,这种模型设置在免疫肿瘤学研究中被广泛使用。将我们的数据与公开可用的患者来源数据集整合后发现,该模型中的巨噬细胞与最近在多种癌症类型和炎症性肺病中发现的促血管生成和促纤维化SPP1 TAM细胞群具有相同的表型特征。这一细胞群与疾病进展的多个方面相关,并且在多种肿瘤指征中与预后不良有关,这凸显了需要有相关模型来将其作为免疫治疗靶点进行研究。我们的研究验证了基于三维人体细胞的培养作为一种更接近体内情况的模型的用途,并能够在与人类疾病相关的环境中对新型巨噬细胞靶向药物进行临床前测试。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/472c/12128677/3a766282fb8a/KONI_A_2502278_F0001_OC.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验