Jin Yan, Lucas Erwan, Zang Jizhao, Briles Travis, Dickson Ivan, Carlson David, Papp Scott B
Time and Frequency Division, National Institute of Standards and Technology, Boulder, CO, USA.
Department of Physics, University of Colorado, Boulder, CO, USA.
Nat Commun. 2025 May 31;16(1):5077. doi: 10.1038/s41467-025-60156-y.
Control of nonlinear interactions in microresonators enhances access to classical and quantum field states across nearly limitless bandwidth. A recent innovation has been to leverage coherent scattering of the intraresonator pump field as a control of group-velocity dispersion and nonlinear frequency shifts, which are precursors for the dynamical evolution of new field states. Yet, since nonlinear-resonator phenomena are intrinsically multimode and exhibit complex modelocking, here we demonstrate a new approach to controlling nonlinear interactions with bandgap modes completely separate from the pump laser. We explore this bandgap-detuned excitation regime through generation of benchmark optical parametric oscillators (OPOs) and soliton microcombs. Indeed, we show that mode-locked states are phase matched more effectively in the bandgap-detuned regime in which we directly control the modal Kerr shift with the bandgaps without perturbing the pump field. In particular, bandgap-detuned excitation enables an arbitrary, mode-by-mode control of the backscattering rate as a versatile tool for mode-locked state engineering. Our experiments leverage nanophotonic resonators for phase matching of OPOs and solitons, leading to control over threshold power, conversion efficiency, and emission direction that enable application advances in high-capacity signaling and computing, signal generation, and quantum sensing.
微谐振器中非线性相互作用的控制增强了在几乎无限带宽内获取经典和量子场态的能力。最近的一项创新是利用腔内泵浦场的相干散射来控制群速度色散和非线性频移,这是新场态动态演化的先兆。然而,由于非线性谐振器现象本质上是多模的且表现出复杂的锁模,在此我们展示一种与泵浦激光完全分离的利用带隙模式控制非线性相互作用的新方法。我们通过生成基准光学参量振荡器(OPO)和孤子微梳来探索这种带隙失谐激发机制。事实上,我们表明在带隙失谐机制下锁模态能更有效地实现相位匹配,在该机制中我们利用带隙直接控制模态克尔频移而不扰动泵浦场。特别地,带隙失谐激发能够对背向散射率进行逐个模式的任意控制,作为锁模态工程的一种通用工具。我们的实验利用纳米光子谐振器实现OPO和孤子的相位匹配,从而实现对阈值功率、转换效率和发射方向的控制,推动了高容量信号传输与计算、信号产生以及量子传感等应用的发展。