Suppr超能文献

一种用于微腔非线性光学的通用频率工程工具:回音壁共振的多重选择性模式分裂

A universal frequency engineering tool for microcavity nonlinear optics: multiple selective mode splitting of whispering-gallery resonances.

作者信息

Lu Xiyuan, Rao Ashutosh, Moille Gregory, Westly Daron A, Srinivasan Kartik

机构信息

Microsystems and Nanotechnology Division, Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.

Institute for Research in Electronics and Applied Physics and Maryland NanoCenter, University of Maryland, College Park, MD 20742, USA.

出版信息

Photonics Res. 2020;8(11). doi: 10.1364/prj.401755.

Abstract

Whispering-gallery microcavities have been used to realize a variety of efficient parametric nonlinear optical processes through the enhanced light-matter interaction brought about by supporting multiple high quality factor and small modal volume resonances. Critical to such studies is the ability to control the relative frequencies of the cavity modes, so that frequency matching is achieved to satisfy energy conservation. Typically this is done by tailoring the resonator cross-section. Doing so modifies the frequencies of all of the cavity modes, that is, the global dispersion profile, which may be undesired, for example, in introducing competing nonlinear processes. Here, we demonstrate a frequency engineering tool, termed multiple selective mode splitting (MSMS), that is independent of the global dispersion and instead allows targeted and independent control of the frequencies of multiple cavity modes. In particular, we show controllable frequency shifts up to 0.8 nm, independent control of the splitting of up to five cavity modes with optical quality factors ≳ 10, and strongly suppressed frequency shifts for untargeted modes. The MSMS technique can be broadly applied to a wide variety of nonlinear optical processes across different material platforms, and can be used to both selectively enhance processes of interest and suppress competing unwanted processes.

摘要

回音壁微腔已被用于通过支持多个高品质因数和小模式体积共振所带来的增强光与物质相互作用来实现各种高效的参量非线性光学过程。此类研究的关键在于控制腔模的相对频率,从而实现频率匹配以满足能量守恒。通常这是通过调整谐振器横截面来完成的。这样做会改变所有腔模的频率,即全局色散分布,例如在引入竞争性非线性过程时,这可能是不理想的。在此,我们展示了一种频率工程工具,称为多重选择性模式分裂(MSMS),它与全局色散无关,而是允许对多个腔模的频率进行有针对性的独立控制。特别是,我们展示了高达0.8 nm的可控频移、对多达五个光学品质因数≳10的腔模分裂的独立控制,以及对非目标模式的强烈抑制频移。MSMS技术可广泛应用于不同材料平台上的各种非线性光学过程,并且可用于选择性增强感兴趣的过程以及抑制竞争性不需要的过程。

相似文献

3
Optical microcavity: sensing down to single molecules and atoms.光学微腔:探测单个分子和原子。
Sensors (Basel). 2011;11(2):1972-91. doi: 10.3390/s110201972. Epub 2011 Feb 7.

引用本文的文献

3
Efficient microresonator frequency combs.高效微谐振器频率梳
eLight. 2024;4(1):18. doi: 10.1186/s43593-024-00075-5. Epub 2024 Oct 10.
9
Creating boundaries along a synthetic frequency dimension.沿合成频率维度创建边界。
Nat Commun. 2022 Jun 13;13(1):3377. doi: 10.1038/s41467-022-31140-7.

本文引用的文献

4
The Nanolithography Toolbox.纳米光刻工具箱
J Res Natl Inst Stand Technol. 2016 Oct 19;121:464-475. doi: 10.6028/jres.121.024. eCollection 2016.
7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验