Murakami M, Balusu D, Maruyama S, Murakami Y, Ramakrishna B
Institute of Laser Engineering, Osaka University, 2-6 Yamadaoka, 565-0871, Suita, Osaka, Japan.
Department of Physics, Indian Institute Technology Hyderabad, Sangareddy, Telangana, 502285, India.
Sci Rep. 2025 May 31;15(1):19112. doi: 10.1038/s41598-025-03385-x.
Our proposed ion acceleration scheme, micronozzle acceleration (MNA), generates proton beams with extremely high kinetic energies on the giga-electron-volt (GeV) order. The underlying physics and performance of MNA are studied with two-dimensional particle-in-cell simulations. In MNA targets, a micron-sized hydrogen rod is embedded inside a hollow micronozzle. Subsequent illumination of the target along the symmetric axis by an ultraintense ultrashort laser pulse forms a strong electrostatic field with a long lifetime and an extensive space around the downstream tail of the nozzle. The electric field significantly amplifies the kinetic energies of the accelerated protons, and ≳ GeV protons are generated at an applied laser intensity of [Formula: see text] W/[Formula: see text].
我们提出的离子加速方案——微喷嘴加速(MNA),能产生动能极高、达到吉电子伏特(GeV)量级的质子束。利用二维粒子模拟研究了MNA的基本物理原理和性能。在MNA靶中,一根微米级的氢棒嵌入一个中空的微喷嘴内。随后,用超强超短激光脉冲沿对称轴照射靶,在喷嘴下游尾部周围形成一个寿命长且空间广阔的强静电场。该电场显著放大了加速质子的动能,在激光强度为[公式:见原文]W/[公式:见原文]时可产生≳GeV的质子。