Ji L L, Snyder J, Pukhov A, Freeman R R, Akli K U
Physics Department, The Ohio State University, Columbus, OH 43210, USA.
Institut für Theoretische Physik I, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany.
Sci Rep. 2016 Mar 16;6:23256. doi: 10.1038/srep23256.
Efficient coupling of intense laser pulses to solid-density matter is critical to many applications including ion acceleration for cancer therapy. At relativistic intensities, the focus has been mainly on investigating various laser beams irradiating initially overdense flat interfaces with little or no control over the interaction. Here, we propose a novel approach that leverages recent advancements in 3D direct laser writing (DLW) of materials and high contrast lasers to manipulate the laser-matter interactions on the micro-scales. We demonstrate, via simulations, that usable intensities ≥10(23) Wcm(-2) could be achieved with current tabletop lasers coupled to micro-engineered plasma lenses. We show that these plasma optical elements act as a lens to focus laser light. These results open new paths to engineering light-matter interactions at ultra-relativistic intensities.
强激光脉冲与固体密度物质的高效耦合对于许多应用至关重要,包括用于癌症治疗的离子加速。在相对论强度下,主要关注的是研究各种激光束照射初始过密平面界面的情况,而对相互作用几乎没有或没有控制。在这里,我们提出了一种新颖的方法,该方法利用材料的三维直接激光写入(DLW)和高对比度激光的最新进展,在微观尺度上操纵激光与物质的相互作用。我们通过模拟证明,结合微工程化等离子体透镜的当前桌面激光器可以实现≥10(23) Wcm(-2)的可用强度。我们表明,这些等离子体光学元件起到聚焦激光的透镜作用。这些结果为在超相对论强度下设计光与物质的相互作用开辟了新途径。