Strehlow Joseph, Kim Joohwan, Bailly-Grandvaux Mathieu, Bolaños Simon, Smith Herbie, Haid Alex, Alfonso Emmanuel L, Aniculaesei Constantin, Chen Hui, Ditmire Todd, Donovan Michael E, Hansen Stephanie B, Hegelich Bjorn M, McLean Harry S, Quevedo Hernan J, Spinks Michael M, Beg Farhat N
Center for Energy Research, University of California - San Diego, La Jolla, CA, 92093, USA.
Center for High Energy Density Science, University of Texas, Austin, TX, 78712, USA.
Sci Rep. 2022 Jun 27;12(1):10827. doi: 10.1038/s41598-022-14881-9.
The interaction of an intense laser with a solid foil target can drive [Formula: see text] TV/m electric fields, accelerating ions to MeV energies. In this study, we experimentally observe that structured targets can dramatically enhance proton acceleration in the target normal sheath acceleration regime. At the Texas Petawatt Laser facility, we compared proton acceleration from a [Formula: see text] flat Ag foil, to a fixed microtube structure 3D printed on the front side of the same foil type. A pulse length (140-450 fs) and intensity ((4-10) [Formula: see text] W/cm[Formula: see text]) study found an optimum laser configuration (140 fs, 4 [Formula: see text] W/cm[Formula: see text]), in which microtube targets increase the proton cutoff energy by 50% and the yield of highly energetic protons ([Formula: see text] MeV) by a factor of 8[Formula: see text]. When the laser intensity reaches [Formula: see text] W/cm[Formula: see text], the prepulse shutters the microtubes with an overcritical plasma, damping their performance. 2D particle-in-cell simulations are performed, with and without the preplasma profile imported, to better understand the coupling of laser energy to the microtube targets. The simulations are in qualitative agreement with the experimental results, and show that the prepulse is necessary to account for when the laser intensity is sufficiently high.
强激光与固体箔靶相互作用可产生高达TV/m的电场,将离子加速至MeV能量。在本研究中,我们通过实验观察到,结构化靶可在靶面法线鞘层加速机制中显著增强质子加速。在德克萨斯拍瓦激光装置上,我们将质子从平面Ag箔的加速情况,与在同一箔类型正面3D打印的固定微管结构的加速情况进行了比较。一项关于脉冲长度(140 - 450 fs)和强度((4 - 10)×10²⁰ W/cm²)的研究发现了一种最佳激光配置(140 fs,4×10²⁰ W/cm²),在此配置下,微管靶使质子截止能量提高了50%,高能质子(≥10 MeV)产额提高了8倍。当激光强度达到10²¹ W/cm²时,预脉冲使微管被过临界等离子体关闭,从而削弱了它们的性能。我们进行了二维粒子模拟,分别导入和不导入预等离子体分布,以更好地理解激光能量与微管靶的耦合。模拟结果与实验结果定性一致,表明当激光强度足够高时,预脉冲是需要考虑的因素。