文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

将批量RNA测序和单细胞RNA测序分析与机器学习相结合,以预测卵巢癌的铂类反应和预后。

Integrating bulk RNA-seq and scRNA-seq analyses with machine learning to predict platinum response and prognosis in ovarian cancer.

作者信息

Gao Tingting, Zhao Peng, Han Suxia

机构信息

Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.

Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, 710038, China.

出版信息

Sci Rep. 2025 May 31;15(1):19123. doi: 10.1038/s41598-025-99930-9.


DOI:10.1038/s41598-025-99930-9
PMID:40450069
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12126549/
Abstract

Platinum-based therapy is an integral part of the standard treatment for ovarian cancer. However, despite extensive research spanning several decades, the identification of dependable predictive biomarkers for platinum response in clinical practice has proven to be a formidable challenge. Recently, the development of single-cell technology has enabled more precise investigations into the heterogeneity of cancer. In this study, we isolated cancer cells from the single-cell transcriptomic data of platinum-sensitive and platinum-resistant patients with ovarian cancer. Differential gene analysis of platinum-sensitive and platinum-resistant cancer cells revealed that several of the differentially expressed genes had previously been reported in other studies to be associated with platinum resistant. Gene set enrichment analysis revealed the up-regulation of pathways involved in processes such as autophagy, cell cycle regulation, and DNA damage repair, which are known to promote platinum resistance in ovarian cancer. Based on these findings, we hypothesized that these differentially expressed genes could be used to predict the response of ovarian cancer patients to platinum-based chemotherapy. To validate this hypothesis, we explored 7 different machine learning models for predicting platinum chemotherapy response at varying feature gene counts. Ultimately, the random forest model performed the best, with 5 genes (PAX2, TFPI2, APOA1, ADIRF and CRISP3) and achieve an AUC of 0.993 in test cohort and 0.989 in GSE63885 independent validation cohorts. We named this model GPPS (Genes to Predict Platinum response Signature). Furthermore, we discovered that the GPPS model can also predict patient prognosis.

摘要

铂类疗法是卵巢癌标准治疗的重要组成部分。然而,尽管经过了数十年的广泛研究,但在临床实践中确定可靠的铂类反应预测生物标志物已被证明是一项艰巨的挑战。最近,单细胞技术的发展使人们能够更精确地研究癌症的异质性。在本研究中,我们从铂敏感和铂耐药的卵巢癌患者的单细胞转录组数据中分离出癌细胞。对铂敏感和铂耐药癌细胞的差异基因分析表明,一些差异表达基因先前在其他研究中已被报道与铂耐药相关。基因集富集分析显示,自噬、细胞周期调控和DNA损伤修复等过程中涉及的通路上调,这些通路已知会促进卵巢癌的铂耐药。基于这些发现,我们假设这些差异表达基因可用于预测卵巢癌患者对铂类化疗的反应。为了验证这一假设,我们探索了7种不同的机器学习模型,用于在不同特征基因数量下预测铂类化疗反应。最终,随机森林模型表现最佳,5个基因(PAX2、TFPI2、APOA1、ADIRF和CRISP3)在测试队列中的AUC为0.993,在GSE63885独立验证队列中的AUC为0.989。我们将此模型命名为GPPS(预测铂反应特征基因)。此外,我们发现GPPS模型还可以预测患者的预后。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec9c/12126549/aad3e17c3c67/41598_2025_99930_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec9c/12126549/c0ba4ab74954/41598_2025_99930_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec9c/12126549/d4c21b14c7c8/41598_2025_99930_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec9c/12126549/a0630b9b64cb/41598_2025_99930_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec9c/12126549/ec128d31e3d3/41598_2025_99930_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec9c/12126549/aad3e17c3c67/41598_2025_99930_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec9c/12126549/c0ba4ab74954/41598_2025_99930_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec9c/12126549/d4c21b14c7c8/41598_2025_99930_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec9c/12126549/a0630b9b64cb/41598_2025_99930_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec9c/12126549/ec128d31e3d3/41598_2025_99930_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec9c/12126549/aad3e17c3c67/41598_2025_99930_Fig5_HTML.jpg

相似文献

[1]
Integrating bulk RNA-seq and scRNA-seq analyses with machine learning to predict platinum response and prognosis in ovarian cancer.

Sci Rep. 2025-5-31

[2]
Bioinformatic profiling identifies a platinum-resistant-related risk signature for ovarian cancer.

Cancer Med. 2020-2

[3]
Integrating Single-Cell and Bulk RNA Sequencing Data to Explore Sphingolipid Metabolism Molecular Signatures in Ovarian Cancer Prognosis: an Original Study.

Int J Med Sci. 2025-3-24

[4]
Gene Expression Profiles in Ovarian Cancer Tissues as a Potential Tool to Predict Platinum-based Chemotherapy Resistance.

Anticancer Res. 2025-1

[5]
Establishment of an ovarian cancer exhausted CD8+T cells-related genes model by integrated analysis of scRNA-seq and bulk RNA-seq.

Eur J Med Res. 2024-7-5

[6]
Integration of scRNA-seq and bulk RNA-seq to reveal the association and potential molecular mechanisms of metabolic reprogramming regulated by lactylation and chemotherapy resistance in ovarian cancer.

Front Immunol. 2025-2-28

[7]
Potential Transcriptomic Biomarkers for Predicting Platinum-based Chemotherapy Resistance in Patients With High-grade Serous Ovarian Cancer.

Anticancer Res. 2024-11

[8]
Enhancing Personalized Chemotherapy for Ovarian Cancer: Integrating Gene Expression Data with Machine Learning.

Asian Pac J Cancer Prev. 2025-3-1

[9]
Neoantigens and the tumor microenvironment play important roles in the prognosis of high-grade serous ovarian cancer.

J Ovarian Res. 2022-1-29

[10]
Genomic and Epigenomic Signatures in Ovarian Cancer Associated with Resensitization to Platinum Drugs.

Cancer Res. 2017-12-11

本文引用的文献

[1]
Rucaparib versus chemotherapy for treatment of relapsed ovarian cancer with deleterious BRCA1 or BRCA2 mutation (ARIEL4): final results of an international, open-label, randomised, phase 3 trial.

Lancet Oncol. 2025-2

[2]
Mechanism of BRCA1-BARD1 function in DNA end resection and DNA protection.

Nature. 2024-10

[3]
A Comparison of Tools That Identify Tumor Cells by Inferring Copy Number Variations from Single-Cell Experiments in Pancreatic Ductal Adenocarcinoma.

Biomedicines. 2024-8-5

[4]
Using clusterProfiler to characterize multiomics data.

Nat Protoc. 2024-11

[5]
PARP Inhibitors: Strategic Use and Optimal Management in Ovarian Cancer.

Cancers (Basel). 2024-2-25

[6]
Cancer statistics, 2024.

CA Cancer J Clin. 2024

[7]
SLFN11 is a BRCA Independent Biomarker for the Response to Platinum-Based Chemotherapy in High-Grade Serous Ovarian Cancer and Clear Cell Ovarian Carcinoma.

Mol Cancer Ther. 2024-1-3

[8]
N6-methyladenosine-regulated ADIRF impairs lung adenocarcinoma metastasis and serves as a potential prognostic biomarker.

Cancer Biol Ther. 2023-12-31

[9]
A chemotherapy response prediction model derived from tumor-promoting B and Tregs and proinflammatory macrophages in HGSOC.

Front Oncol. 2023-7-14

[10]
BRCA mutation carriers suffering from ovarian cancer as a model for treatment decision in higher lines - Place for platinum reinduction.

J Cancer Res Ther. 2023

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索