Suppr超能文献

用于儿科人群自动心脏杂音检测的集成残差循环神经网络模型的开发与验证

Development and validation of an integrated residual-recurrent neural network model for automated heart murmur detection in pediatric populations.

作者信息

Hsieh Yi-Tang, Liu Hsien-Kuan, Wu Jiunn-Ren, Yan Ting-Yu, Huang Yu-Jung, Guo Mei Hui, Yang Ming-Chun

机构信息

Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung, Taiwan.

Department of Pediatrics, E-DA Hospital, I-Shou University, No. 1, Yida Road, Yanchao District, Kaohsiung, Taiwan.

出版信息

Sci Rep. 2025 May 31;15(1):19155. doi: 10.1038/s41598-025-04746-2.

Abstract

Congenital heart disease affects approximately 1% of children worldwide, with a number of cases in resource-limited settings remaining undiagnosed through school age. While cardiac auscultation is a key screening method, its effectiveness varies widely, depending on practitioner expertise. This study introduces an innovative artificial intelligence (AI) approach combining conventional machine learning and deep learning techniques to improve heart murmur detection in pediatric populations. By developing an integrated Residual-Recurrent Neural Networks model and analyzing heart sound recordings from 500 pediatric participants, we achieved remarkable diagnostic performance in real-world pediatric clinical settings. At the single recording-level, the model achieved an accuracy of 88.5%, sensitivity of 85.5%, and specificity of 90.7%. Performance improved at the participant-level, with an accuracy of 90.0%, sensitivity of 88.8%, and specificity of 91.2%. The model showed particularly strong results when tested against the PhysioNet database (accuracy 95.2%, sensitivity 91.6%, and specificity 99.1%). This research provides a compelling proof-of-concept for AI-assisted cardiac screening, potentially revolutionizing early detection strategies in pediatric cardiac diseases.

摘要

先天性心脏病影响着全球约1%的儿童,在资源有限的环境中,有许多病例在学龄期仍未得到诊断。虽然心脏听诊是一种关键的筛查方法,但其有效性差异很大,这取决于从业者的专业水平。本研究引入了一种创新的人工智能(AI)方法,该方法结合了传统机器学习和深度学习技术,以改善儿科人群中的心杂音检测。通过开发一个集成的残差循环神经网络模型,并分析来自500名儿科参与者的心音记录,我们在实际的儿科临床环境中取得了显著的诊断性能。在单个记录水平上,该模型的准确率为88.5%,灵敏度为85.5%,特异性为90.7%。在参与者水平上性能有所提高,准确率为90.0%,灵敏度为88.8%,特异性为91.2%。当在PhysioNet数据库上进行测试时,该模型显示出特别强劲的结果(准确率95.2%,灵敏度91.6%,特异性99.1%)。这项研究为人工智能辅助心脏筛查提供了一个令人信服的概念验证,可能会彻底改变儿科心脏病的早期检测策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/370c/12126548/87397a34110a/41598_2025_4746_Fig1_HTML.jpg

相似文献

2
Artificial Intelligence-Assisted Auscultation of Heart Murmurs: Validation by Virtual Clinical Trial.
Pediatr Cardiol. 2019 Mar;40(3):623-629. doi: 10.1007/s00246-018-2036-z. Epub 2018 Dec 12.
3
Automated analysis of heart sound signals in screening for structural heart disease in children.
Eur J Pediatr. 2024 Nov;183(11):4951-4958. doi: 10.1007/s00431-024-05773-3. Epub 2024 Sep 21.
5
Initial Field Test of a Cloud-Based Cardiac Auscultation System to Determine Murmur Etiology in Rural China.
Pediatr Cardiol. 2017 Apr;38(4):656-662. doi: 10.1007/s00246-016-1563-8. Epub 2017 Feb 2.
6
A classifier based on the artificial neural network approach for cardiologic auscultation in pediatrics.
Artif Intell Med. 2005 Mar;33(3):251-60. doi: 10.1016/j.artmed.2004.07.008.
7
Identifying pediatric heart murmurs and distinguishing innocent from pathologic using deep learning.
Artif Intell Med. 2024 Jul;153:102867. doi: 10.1016/j.artmed.2024.102867. Epub 2024 Apr 4.
8
Intelligent Diagnosis of Heart Murmurs in Children with Congenital Heart Disease.
J Healthc Eng. 2020 May 9;2020:9640821. doi: 10.1155/2020/9640821. eCollection 2020.
9
Deep Learning Algorithm for Automated Cardiac Murmur Detection via a Digital Stethoscope Platform.
J Am Heart Assoc. 2021 May 4;10(9):e019905. doi: 10.1161/JAHA.120.019905. Epub 2021 Apr 26.
10
Computer-aided auscultation of murmurs in children: evaluation of commercially available software.
Cardiol Young. 2016 Oct;26(7):1359-64. doi: 10.1017/S1047951115002656. Epub 2016 Jan 20.

本文引用的文献

1
A recurrent neural network and parallel hidden Markov model algorithm to segment and detect heart murmurs in phonocardiograms.
PLOS Digit Health. 2024 Nov 25;3(11):e0000436. doi: 10.1371/journal.pdig.0000436. eCollection 2024 Nov.
2
Population-Based Estimates of the Prevalence of Children With Congenital Heart Disease and Associated Comorbidities in the United States.
Circ Cardiovasc Qual Outcomes. 2024 Sep;17(9):e010657. doi: 10.1161/CIRCOUTCOMES.123.010657. Epub 2024 Aug 26.
3
5
Convolutional and recurrent neural networks for the detection of valvular heart diseases in phonocardiogram recordings.
Comput Methods Programs Biomed. 2021 Mar;200:105940. doi: 10.1016/j.cmpb.2021.105940. Epub 2021 Jan 17.
8
Congenital heart disease in school children in Lagos, Nigeria: Prevalence and the diagnostic gap.
Am J Med Genet C Semin Med Genet. 2020 Mar;184(1):47-52. doi: 10.1002/ajmg.c.31779. Epub 2020 Feb 13.
9
Accuracy of cardiac auscultation in detection of neonatal congenital heart disease by general paediatricians.
Cardiol Young. 2019 May;29(5):679-683. doi: 10.1017/S1047951119000799. Epub 2019 Apr 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验