Suppr超能文献

通过揭示分子相互作用实现基于核磁共振驱动的结构药物发现。

NMR-driven structure-based drug discovery by unveiling molecular interactions.

作者信息

Platzer Gerald, Mayer Moriz, McConnell Darryl B, Konrat Robert

机构信息

MAG-LAB GmbH, Karl-Farkas-Gasse 22, 1030, Vienna, Austria.

Christian Doppler Laboratory for High-Content Structural Biology and Biotechnology, Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, 1030, Vienna, Austria.

出版信息

Commun Chem. 2025 May 31;8(1):167. doi: 10.1038/s42004-025-01542-x.

Abstract

High-resolution 3D structural information is crucial for drug discovery and routinely used in structure-guided optimization to improve initial hits from screening campaigns to clinical drug candidates. X-ray crystallography is commonly the method of choice to guide medicinal chemistry in the design process, but it has its limitations and shortcomings. Here, we discuss the use of solution-state NMR spectroscopy in combination with selective side-chain labeling and advanced computational workflows to generate protein-ligand ensembles. This provides reliable and accurate structural information about protein-ligand complexes for medicinal chemists that is also suitable for high-throughput.

摘要

高分辨率三维结构信息对于药物研发至关重要,并且在结构导向优化中常规使用,以将筛选活动中获得的初始活性化合物优化为临床候选药物。X射线晶体学通常是在设计过程中指导药物化学的首选方法,但它有其局限性和缺点。在这里,我们讨论结合使用溶液核磁共振波谱、选择性侧链标记和先进的计算工作流程来生成蛋白质-配体集合体。这为药物化学家提供了关于蛋白质-配体复合物的可靠且准确的结构信息,该信息也适用于高通量研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bfe7/12126535/3b78a2a9a7c4/42004_2025_1542_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验