He Yi-Bo, Li Jun-Yu, Chen Shi-Liang, Ye Rui, Fei Yi-Ran, Tong Shi-Yuan, Song Yu-Xuan, Wang Cong, Zhang Li, Fang Ju, Shang Yue, Zhang Zhe-Zhong, Chen Jin, Yang Ai-Zhong, Liu Jie, Liu Yong-Lin
Department of Clinical Lab, The First Affiliated Hospital of Zhejiang Chinese Medical University, (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang Province, China.
Department of Pharmacy, Hainan Branch, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Sanya, China.
BMC Pregnancy Childbirth. 2025 May 31;25(1):637. doi: 10.1186/s12884-025-07742-6.
Recurrent pregnancy loss (RPL), characterized by multiple miscarriages, remains a condition with unclear etiology, posing significant challenges for affected women and couples. This study aims to explore the underlying mechanisms of RPL, focusing on the role of decidual Natural Killer (dNK) cells and the TNF receptor-associated factor 3 (TRAF3) gene as a potential diagnostic marker and therapeutic target.
We used single-cell transcriptomic analysis and machine learning techniques to analyze decidual tissues from RPL patients and normal pregnancy(NP). Weighted Gene Co-expression Network Analysis (WGCNA) was employed to identify key gene clusters. Validation studies included RT-PCR, immunohistochemistry, and molecular docking analyses.
We observed an increased proportion of specific dNK cell subtypes (dNK2 and dNK3) in the RPL group compared to NP, implicating their role in RPL pathology. dNK cells in RPL primarily interacted with monocytes via the Macrophage Migration Inhibitory Factor (MIF) signaling pathway. Our diagnostic model, incorporating TRAF3 and nine other genes, demonstrated high diagnostic efficiency. TRAF3 expression was significantly lower in the decidua of RPL patients, and Diethylstilbestrol and Metformin were identified as potential modulators of TRAF3.
This study highlights TRAF3 as a promising diagnostic marker and therapeutic target for RPL. The diagnostic model we developed has potential for early detection and personalized treatment strategies for RPL.
复发性流产(RPL)以多次流产为特征,其病因仍不明确,给受影响的女性及其伴侣带来了重大挑战。本研究旨在探讨RPL的潜在机制,重点关注蜕膜自然杀伤(dNK)细胞的作用以及肿瘤坏死因子受体相关因子3(TRAF3)基因作为潜在的诊断标志物和治疗靶点。
我们使用单细胞转录组分析和机器学习技术来分析RPL患者和正常妊娠(NP)的蜕膜组织。采用加权基因共表达网络分析(WGCNA)来识别关键基因簇。验证研究包括逆转录聚合酶链反应(RT-PCR)、免疫组织化学和分子对接分析。
与NP组相比,我们观察到RPL组中特定dNK细胞亚群(dNK2和dNK3)的比例增加,这表明它们在RPL病理过程中发挥作用。RPL中的dNK细胞主要通过巨噬细胞迁移抑制因子(MIF)信号通路与单核细胞相互作用。我们包含TRAF3和其他九个基因的诊断模型显示出高诊断效率。TRAF3在RPL患者蜕膜中的表达显著降低,己烯雌酚和二甲双胍被确定为TRAF3的潜在调节剂。
本研究强调TRAF3作为RPL有前景的诊断标志物和治疗靶点。我们开发的诊断模型具有早期检测和RPL个性化治疗策略的潜力。