Suppr超能文献

使用XGBoost回归器和堆叠集成学习提高AlO栅极离子敏感场效应晶体管中的pH预测精度。

Enhancing pH prediction accuracy in AlO gated ISFET using XGBoost regressor and stacking ensemble learning.

作者信息

Panda Ashirbad, Datar Rishikesh, Deshpande Shreyas, Bacher Gautam

机构信息

Department of Electrical and Electronics Engineering, BITS Pilani K K Birla Goa Campus, Goa, 403726, India.

出版信息

Sci Rep. 2025 Jun 1;15(1):19197. doi: 10.1038/s41598-025-04530-2.

Abstract

An ion-sensitive field-effect transistor (ISFET) is widely used in environmental and biomedical applications due to its rapid response, miniaturization, and cost-effectiveness. In this study, a numerical model of an Al₂O₃-gated ISFET was developed to detect pH levels. The effects of gate dielectric thickness, doping concentration, and temperature on ISFET's performance were evaluated using I-V characteristics. An eXtreme Gradient Boosting (XGBoost) regression model was employed to predict pH levels using data obtained from I-V characteristics. Further, Hyperparameter optimization was performed to tune critical XGBoost-hyperparameters such as maximum depth, minimum child weight, estimators, learning rate, α, and λ. The optimization strategies such as random search, grid search and Bayesian optimization were utilized to improve the efficacy of regressor by minimizing errors and maximizing accuracy in prediction. A stacking ensemble learning approach was also implemented to integrate multiple models, enhancing prediction accuracy and thereby capturing additional information. The XGBoost regressor achieved superior results with R = 0.9846, MSE = 0.2342, and MAE = 0.2317, compared to other regressor models. Therefore, the use of XGBoost regressors with hyperparameter optimization and stacking ensemble learning approach is found to be highly effective for pH prediction from ISFET under various operating conditions.

摘要

离子敏感场效应晶体管(ISFET)因其响应迅速、小型化和成本效益高而被广泛应用于环境和生物医学领域。在本研究中,开发了一种Al₂O₃栅极ISFET的数值模型来检测pH值。利用I-V特性评估了栅极介电层厚度、掺杂浓度和温度对ISFET性能的影响。采用极端梯度提升(XGBoost)回归模型,利用从I-V特性获得的数据预测pH值。此外,还进行了超参数优化,以调整XGBoost的关键超参数,如最大深度、最小子节点权重、估计器、学习率、α和λ。利用随机搜索、网格搜索和贝叶斯优化等优化策略,通过最小化误差和最大化预测准确性来提高回归器的效能。还实施了堆叠集成学习方法来整合多个模型,提高预测准确性,从而获取更多信息。与其他回归模型相比,XGBoost回归器取得了优异的结果,R = 0.9846,MSE = 0.2342,MAE = 0.2317。因此,发现使用经过超参数优化的XGBoost回归器和堆叠集成学习方法对于在各种操作条件下从ISFET预测pH值非常有效。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ab8/12127451/d6115747cec2/41598_2025_4530_Fig1_HTML.jpg

相似文献

10
A stacked ensemble machine learning model for the prediction of pentavalent 3 vaccination dropout in East Africa.
Front Big Data. 2025 Apr 7;8:1522578. doi: 10.3389/fdata.2025.1522578. eCollection 2025.

本文引用的文献

1
Machine learning assisted biosensing technology: An emerging powerful tool for improving the intelligence of food safety detection.
Curr Res Food Sci. 2024 Jan 12;8:100679. doi: 10.1016/j.crfs.2024.100679. eCollection 2024.
2
An optimized XGBoost-based machine learning method for predicting wave run-up on a sloping beach.
MethodsX. 2023 Mar 10;10:102119. doi: 10.1016/j.mex.2023.102119. eCollection 2023.
3
Compact Modeling of Two-Dimensional Field-Effect Biosensors.
Sensors (Basel). 2023 Feb 7;23(4):1840. doi: 10.3390/s23041840.
4
Machine learning toward high-performance electrochemical sensors.
Anal Bioanal Chem. 2023 Jul;415(18):3683-3692. doi: 10.1007/s00216-023-04514-z. Epub 2023 Jan 13.
5
Machine Learning: Algorithms, Real-World Applications and Research Directions.
SN Comput Sci. 2021;2(3):160. doi: 10.1007/s42979-021-00592-x. Epub 2021 Mar 22.
6
Machine learning-assisted calibration of Hg sensors based on carbon nanotube field-effect transistors.
Biosens Bioelectron. 2021 May 15;180:113085. doi: 10.1016/j.bios.2021.113085. Epub 2021 Feb 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验