Suppr超能文献

基于决策的圆形毕达哥拉斯模糊框架算法及先进石油勘探方法

Decision based algorithm for circular pythagorean fuzzy framework and advanced petroleum exploration methods.

作者信息

Nazir Maria, Ali Zeeshan, Hussain Abrar, Ullah Kifayat, Saidani Oumaima

机构信息

Department of Mathematics, Riphah International University Lahore (Lahore Campus, Lahore, 54000, Pakistan.

Department of Information Management, National Yunlin University of Science and Technology, 123 University Road, Section 3, Douliou, Yunlin, 64002, Taiwan, R.O.C.

出版信息

Sci Rep. 2025 Jun 1;15(1):19212. doi: 10.1038/s41598-025-03795-x.

Abstract

This presentation articulates different terminologies of fuzzy mathematical approaches and decision-making techniques for handling vague-type human opinions. To achieve this purpose, we explore a novel approach of circular pythagorean fuzzy set (Cr-PyFS), which is an extended framework of intuitionistic and pythagorean fuzzy sets. A Cr-PyFS expresses expert opinion with an additional term radius of a circle among an element's membership grade and non-membership grade. Moreover, we also illustrate the theory of Hamy mean (HM) models to define correlation among different input arguments and preferences. By combining theories of HM models and Cr-PyFSs, we derived new mathematical methodologies, including circular pythagorean fuzzy HM (Cr-PyFHM), circular pythagorean fuzzy weighted HM (Cr-PyFWHM), circular pythagorean fuzzy Dual HM (Cr-PyFDHM) and circular pythagorean fuzzy weighted Dual HM (Cr-PyFDHM) operators. All aggregation operators (AOs) are verified through different mathematical properties and special cases. An intelligent decision algorithm of the multi-attribute decision-making (MADM) problem is modified considering circular pythagorean fuzzy information. To show the reliability and effectiveness of developed approaches, we discussed an application related to the exploration and production of the petroleum industry. An experimental case study is resolved using derived mathematical approaches and decision-making terminologies. The setting of different parametric variables in sensitivity analysis verifies the advantages and reliability of designed approaches. A comparison approach is conducted to compare the results of pioneered approaches with existing AOs.

摘要

本报告阐述了用于处理模糊型人类意见的模糊数学方法和决策技术的不同术语。为实现这一目的,我们探索了一种新型的循环毕达哥拉斯模糊集(Cr-PyFS)方法,它是直觉模糊集和毕达哥拉斯模糊集的扩展框架。一个Cr-PyFS在元素的隶属度和非隶属度之间用一个额外的圆半径项来表达专家意见。此外,我们还阐述了哈米均值(HM)模型理论,以定义不同输入参数和偏好之间的相关性。通过结合HM模型理论和Cr-PyFS,我们推导了新的数学方法,包括循环毕达哥拉斯模糊HM(Cr-PyFHM)、循环毕达哥拉斯模糊加权HM(Cr-PyFWHM)、循环毕达哥拉斯模糊对偶HM(Cr-PyFDHM)和循环毕达哥拉斯模糊加权对偶HM(Cr-PyFWDHM)算子。所有聚合算子(AO)都通过不同的数学性质和特殊情况进行了验证。考虑循环毕达哥拉斯模糊信息,修改了多属性决策(MADM)问题的智能决策算法。为了展示所开发方法的可靠性和有效性,我们讨论了一个与石油工业勘探和生产相关的应用。使用推导的数学方法和决策术语解决了一个实验案例研究。敏感性分析中不同参数变量的设置验证了所设计方法的优势和可靠性。进行了一种比较方法,将开创性方法的结果与现有AO进行比较。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验