Alolaiyan Hanan, Kalsoom Umme, Shuaib Umer, Razaq Abdul, Baidar Abdul Wakil, Xin Qin
Department of Mathematics, College of Science, King Saud University, Riyadh, Saudi Arabia.
Department of Mathematics, Government College University, Faisalabad, 38000, Pakistan.
Sci Rep. 2024 Dec 30;14(1):31944. doi: 10.1038/s41598-024-83478-1.
Air quality is a major concern for human health, with pollutants linked to respiratory problems and chronic illnesses. Air quality monitoring systems are essential for measuring and tracking pollutants in indoor and outdoor environments. In the various disciplines of fuzzy environments, the aggregation operators are indispensable components of the decision-making process and possess a significant capacity to manage unpredictable and ambiguous data. This study utilizes the linguistic Pythagorean fuzzy set to address the aforementioned environmental scenarios, which improve comprehension of air quality through the application of AOs. This work introduces two new aggregation operators: the linguistic Pythagorean fuzzy Dombi ordered weighted averaging (LPFDOWA) and the language Pythagorean fuzzy Dombi ordered weighted geometric (LPFDOWG), and examines their structural properties. Furthermore, we develop a novel scoring function for multiple attribute decision-making (MADM) issues within the context of linguistic Pythagorean fuzzy knowledge. We provide a systematic mathematical procedure to address MADM issues within the context of the linguistic Pythagorean fuzzy Dombi framework. Furthermore, we effectively employ these approaches to address the MADM issue of selecting an efficient Air quality monitoring systems for air pollution monitoring. Additionally, we present a thorough comparative analysis to demonstrate the effectiveness of the proposed methodology relative to conventional techniques.
空气质量是人类健康的主要关注点,污染物与呼吸问题和慢性病有关。空气质量监测系统对于测量和跟踪室内外环境中的污染物至关重要。在模糊环境的各个学科中,聚合算子是决策过程中不可或缺的组成部分,并且具有处理不可预测和模糊数据的显著能力。本研究利用语言毕达哥拉斯模糊集来处理上述环境场景,通过应用聚合算子提高对空气质量的理解。这项工作引入了两个新的聚合算子:语言毕达哥拉斯模糊Dombi有序加权平均(LPFDOWA)和语言毕达哥拉斯模糊Dombi有序加权几何(LPFDOWG),并研究了它们的结构特性。此外,我们针对语言毕达哥拉斯模糊知识背景下的多属性决策(MADM)问题开发了一种新颖的评分函数。我们提供了一个系统的数学程序来解决语言毕达哥拉斯模糊Dombi框架下的MADM问题。此外,我们有效地运用这些方法来解决选择高效空气质量监测系统进行空气污染监测的MADM问题。此外,我们进行了全面的比较分析,以证明所提出方法相对于传统技术的有效性。