Suppr超能文献

有氧运动对膝骨关节炎的疗效:随机临床试验的网状Meta分析

Efficacy of aerobic exercises for knee osteoarthritis: a network meta analysis of randomized clinical trials.

作者信息

Luo Yuan, Chen Xiao, Gong Haibo, Chen Li, Zhang Liyue, Li Shuqiang

机构信息

Department of Rehabilitation, The First People's Hospital of Neijiang City, Neijiang, Sichuan, China.

Department of Orthopedics, The First People's Hospital of Neijiang City, Neijiang, Sichuan, China.

出版信息

J Orthop Surg Res. 2025 Jun 2;20(1):557. doi: 10.1186/s13018-025-05973-z.

Abstract

BACKGROUND

Previous research has demonstrated the therapeutic potential of aerobic exercise in alleviating symptoms of knee osteoarthritis (KOA). Nevertheless, comparative evidence regarding the relative effectiveness of different exercise modalities remains inconclusive, and the optimal exercise protocol continues to be debated. To address this knowledge gap, we performed a systematic network meta-analysis to compare and rank the clinical efficacy of various aerobic exercise regimens for managing KOA.

METHODS

A systematic literature search was conducted across five electronic databases (PubMed, Cochrane Library, Web of Science, Embase, and Scopus) from database inception through June 2024. Eligible studies included randomized controlled trials (RCTs) evaluating aerobic exercise interventions for KOA management. Two investigators independently performed study selection using predefined inclusion criteria, with discrepancies resolved through consensus or third-party adjudication. Data extraction encompassed demographic characteristics, intervention protocols, and outcome measures. Methodological quality was assessed using the Cochrane Risk of Bias Tool 2.0. Statistical analyses were performed using Stata 17.0 (Network Meta-Analysis package) under a frequentist framework, with treatment effects estimated through surface under the cumulative ranking curve (SUCRA) probabilities.

RESULTS

The network meta-analysis included 67 randomized controlled trials comprising 4,944 patients with knee osteoarthritis (KOA), assessing 10 aerobic exercise interventions: walking (WK), weight-loss walking (LK), retro walking (RW), cycling (CY), aquatic training (AT), yoga (YG), Tai Chi (TC), Baduanjin (BD), Wuqinxi (WQ), and Pilates (PT). Surface under the cumulative ranking curve (SUCRA) probability analyses yielded the following results: Pilates (PT) demonstrated the highest probability of being optimal for WOMAC pain score (SUCRA = 0.8%), WOMAC stiffness (SUCRA = 15.7%), physical function (SUCRA = 0.0%), and total WOMAC score (SUCRA = 7.8%). Tai Chi (TC) showed the highest likelihood of efficacy for Visual Analog Scale (VAS) outcomes (SUCRA = 17.4%), while weight-loss walking (LK) ranked first for Timed Up and Go (TUG) improvement (SUCRA = 27.1%). The comprehensive efficacy ranking was PT > LK > BD > YG > AT > WK > RW > TC > WQ > CY.

CONCLUSION

This study demonstrates that Pilates appears to be the most effective aerobic exercise modality for managing knee osteoarthritis (KOA), particularly in enhancing overall functional outcomes. Tai Chi exhibited the greatest efficacy in reducing pain intensity, as quantified by the Visual Analog Scale (VAS). Based on these findings, Pilates and Tai Chi should be prioritized as primary therapeutic interventions for the majority of KOA patients.

摘要

背景

先前的研究已证明有氧运动在缓解膝关节骨关节炎(KOA)症状方面具有治疗潜力。然而,关于不同运动方式相对有效性的比较证据仍不明确,最佳运动方案仍在争论中。为填补这一知识空白,我们进行了一项系统网络荟萃分析,以比较和排序各种有氧运动方案治疗KOA的临床疗效。

方法

从数据库建立至2024年6月,在五个电子数据库(PubMed、Cochrane图书馆、科学网、Embase和Scopus)中进行了系统的文献检索。符合条件的研究包括评估用于KOA管理的有氧运动干预措施的随机对照试验(RCT)。两名研究人员使用预定义的纳入标准独立进行研究筛选,分歧通过共识或第三方裁决解决。数据提取包括人口统计学特征、干预方案和结局指标。使用Cochrane偏倚风险工具2.0评估方法学质量。在频率论框架下,使用Stata 17.0(网络荟萃分析软件包)进行统计分析,通过累积排序曲线下面积(SUCRA)概率估计治疗效果。

结果

网络荟萃分析纳入了67项随机对照试验,共4944例膝关节骨关节炎(KOA)患者,评估了10种有氧运动干预措施:步行(WK)、减重步行(LK)、倒走(RW)、骑自行车(CY)

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27d9/12128381/60006a744e47/13018_2025_5973_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验