Barros-Reguera Marta, Lopez-Tavera Esteban, Schröder Gabriela C, Nardini Greta, Kristoffersen Kenneth A, Ayuso-Fernández Iván, Eijsink Vincent G H, Sørlie Morten
Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), 1432, Ås, Norway.
Margarita Salas Center for Biological Research, C. Ramiro de Maeztu, 9, 28040, Madrid, Spain.
Biotechnol Biofuels Bioprod. 2025 Jul 28;18(1):83. doi: 10.1186/s13068-025-02675-w.
Unspecific peroxygenases (UPOs) are versatile enzymes capable of oxidizing a broad range of substrates, using hydrogen peroxide as the sole co-substrate. In this study, UPOs were evaluated for their potential in the selective oxyfunctionalization of the phenolic lignin monomer 4-propylguaiacol (4-PG) to generate versatile scaffolds for the synthesis of high-value compounds. In addition to the desired peroxygenase reaction, the phenolic group of 4-PG is susceptible to undesirable one-electron oxidation (peroxidase activity). Assessment of the activity of 19 UPOs from phylogenetically diverse clades toward 4-PG revealed that several UPOs could serve as potential biocatalysts for the functionalization of 4-PG, with some enzymes showing both promising conversion yields (>50%) and regioselectivity for the peroxygenase reaction. Pronounced differences in peroxygenase:peroxidase activity ratios and regioselectivity were observed. Comparative analysis-supported by experimental activity profiles and structural data-suggest that a more constrained active-site topology contributes to the peroxygenase activity. UPOs from a clade within the Ascomycota phylum with high peroxygenase activity possess a unique aliphatic pocket in their catalytic centers. Our study provides valuable insights into the structure-function relationships underpinning enhanced peroxygenase activity of UPOs and provides a functional mapping of a broad UPO-sequence space for 4-PG, highlighting these enzymes as promising catalysts for the selective oxyfunctionalization of a phenolic lignin monomer.
非特异性过氧酶(UPOs)是一种多功能酶,能够以过氧化氢作为唯一的共底物,氧化多种底物。在本研究中,评估了UPOs在酚类木质素单体4-丙基愈创木酚(4-PG)的选择性氧官能化反应中的潜力,以生成用于合成高价值化合物的通用支架。除了所需的过氧酶反应外,4-PG的酚羟基还容易发生不期望的单电子氧化(过氧化物酶活性)。对来自系统发育不同分支的19种UPOs对4-PG的活性评估表明,几种UPOs可作为4-PG官能化的潜在生物催化剂,一些酶对过氧酶反应显示出有前景的转化率(>50%)和区域选择性。观察到过氧酶与过氧化物酶活性比率和区域选择性存在显著差异。通过实验活性谱和结构数据支持的比较分析表明,活性位点拓扑结构更受限有助于过氧酶活性。来自子囊菌门内一个具有高过氧酶活性分支的UPOs在其催化中心具有独特的脂肪族口袋。我们的研究为UPOs过氧酶活性增强的结构-功能关系提供了有价值的见解,并为4-PG提供了一个广泛的UPO序列空间功能图谱,突出了这些酶作为酚类木质素单体选择性氧官能化的有前景催化剂的作用。