Suppr超能文献

用一种简单的计算方法解释人群物质使用的“U形”分布。

Explaining "U-shaped" distributions of population substance use with a simple computational approach.

作者信息

Borodovsky Jacob T

机构信息

Center for Technology and Behavioral Health, Dartmouth Geisel School of Medicine, 46 Centerra Pkwy, Lebanon, NH 03766, USA.

Department of Biomedical Data Science, Dartmouth Geisel School of Medicine, 1 Rope Ferry Road, Hanover, NH 03755, USA.

出版信息

J Artif Soc Soc Simul. 2025;28(2). doi: 10.18564/jasss.5586. Epub 2025 Mar 31.

Abstract

BACKGROUND

"U-shaped" distributions of past 30-day substance use frequencies are pervasive, yet no established model explains this phenomenon. Using probability functions to describe these distributions yields unintuitive, atheoretical results. This study introduces a simple computational model of individual-level, longitudinal substance use patterns to understand how cross-sectional U-shaped distributions emerge in populations.

MODEL

Each independent computational object transitions between two states: not using a substance ("N"), or using a substance ("U"). The model has two key components: (1) each object has a unique risk factor probability governing the transition from N to U, and a unique protective factor probability governing the transition from U to N; (2) an object's current decision to use or not use is influenced by its prior decisions (i.e., "path dependence"). Three modeler input parameters control these two components.

ANALYSIS

First, the model is fit to empirical cross-sectional distributions of past 30-day use frequencies for ten substances (e.g., alcohol, cannabis, tobacco, etc.) from the U.S. National Survey on Drug Use and Health. Next, combinations of values of the model's three inputs are tested to determine the conditions that produce U-shaped distributions. Finally, supplemental testing explored structural variations of the original model to assess whether simpler or alternative configurations are also capable of generating U-shaped distributions.

RESULTS

The model effectively reproduced the U-shaped distributions observed in empirical data across all substances. Path dependence emerged as a critical feature for generating U-shaped distributions, independent of the specific distribution shapes used for assigning transition probabilities. However, results also indicated that neither of the model's two key components are required for generating U-shaped distributions.

CONCLUSION

This study demonstrates how a simple, theoretically-grounded computational model of individual-level substance use patterns can help substance use researchers understand the emergence of population-level, cross-sectional U-shaped distributions of substance use.

摘要

背景

过去30天物质使用频率的“U形”分布普遍存在,但尚无既定模型解释这一现象。使用概率函数来描述这些分布会产生不直观、无理论依据的结果。本研究引入了一个关于个体层面纵向物质使用模式的简单计算模型,以了解人群中横截面U形分布是如何出现的。

模型

每个独立的计算对象在两种状态之间转换:不使用某种物质(“N”)或使用某种物质(“U”)。该模型有两个关键组成部分:(1)每个对象都有一个独特的风险因素概率来控制从N到U的转换,以及一个独特的保护因素概率来控制从U到N的转换;(2)一个对象当前使用或不使用的决定受其先前决定的影响(即“路径依赖”)。三个建模者输入参数控制这两个组成部分。

分析

首先,该模型与美国国家药物使用和健康调查中十种物质(如酒精、大麻、烟草等)过去30天使用频率的实证横截面分布相拟合。接下来,测试模型三个输入值的组合,以确定产生U形分布的条件。最后,补充测试探索了原始模型的结构变化,以评估更简单或替代配置是否也能够生成U形分布。

结果

该模型有效地再现了实证数据中所有物质观察到的U形分布。路径依赖成为生成U形分布的一个关键特征,与用于分配转换概率的特定分布形状无关。然而,结果还表明,生成U形分布并不需要模型的两个关键组成部分。

结论

本研究展示了一个关于个体层面物质使用模式的简单、基于理论的计算模型如何能够帮助物质使用研究人员理解人群层面物质使用横截面U形分布的出现。

相似文献

1
Explaining "U-shaped" distributions of population substance use with a simple computational approach.
J Artif Soc Soc Simul. 2025;28(2). doi: 10.18564/jasss.5586. Epub 2025 Mar 31.
8
Granule cells perform frequency-dependent pattern separation in a computational model of the dentate gyrus.
Hippocampus. 2024 Jan;34(1):14-28. doi: 10.1002/hipo.23585. Epub 2023 Nov 11.
9

本文引用的文献

1
Role of social context in addiction etiology and recovery.
Pharmacol Biochem Behav. 2023 Aug;229:173603. doi: 10.1016/j.pbb.2023.173603. Epub 2023 Jul 22.
2
Inverse Generative Social Science: Backward to the Future.
J Artif Soc Soc Simul. 2023;26(2). doi: 10.18564/jasss.5083. Epub 2023 Mar 31.
3
Agent-Based Modelling of Health Inequalities following the Complexity Turn in Public Health: A Systematic Review.
Int J Environ Res Public Health. 2022 Dec 14;19(24):16807. doi: 10.3390/ijerph192416807.
4
Intermediate stable states in substance use.
Addict Behav. 2022 Jun;129:107252. doi: 10.1016/j.addbeh.2022.107252. Epub 2022 Jan 20.
6
A Systematic Review of Simulation Models to Track and Address the Opioid Crisis.
Epidemiol Rev. 2022 Jan 14;43(1):147-165. doi: 10.1093/epirev/mxab013.
7
Appropriate analyses of bimodal substance use frequency outcomes: a mixture model approach.
Am J Drug Alcohol Abuse. 2021 Sep 3;47(5):559-568. doi: 10.1080/00952990.2021.1946070. Epub 2021 Aug 9.
8
Situating agent-based modelling in population health research.
Emerg Themes Epidemiol. 2021 Jul 30;18(1):10. doi: 10.1186/s12982-021-00102-7.
10
Computational models of drug use and addiction: A review.
J Abnorm Psychol. 2020 Aug;129(6):544-555. doi: 10.1037/abn0000503.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验