Suppr超能文献

开发下一代寡核苷酸疗法的工程学考量

Engineering Considerations for Developing Next-Generation Oligonucleotide Therapeutics.

作者信息

Ebrahimi Sasha B, Bhattacharjee Himanshu, Sonti Sujatha, Fuerst Doug, Doyle Patrick S, Lu Yi, Samanta Devleena

机构信息

Emerging Drug Delivery Platforms, GlaxoSmithKline, 1250 S Collegeville Rd, Collegeville, PA, USA.

Drug Product Development, GlaxoSmithKline, 1250 S Collegeville Rd, Collegeville, PA, USA.

出版信息

Nat Chem Eng. 2024 Dec;1(12):741-750. doi: 10.1038/s44286-024-00152-z. Epub 2024 Dec 23.

Abstract

Oligonucleotide therapeutics are revolutionizing disease treatment by regulating molecules at the genetic level, offering the possibility of treating conditions that were once considered "undruggable." However, delivering oligonucleotides to tissues beyond the liver remains a key challenge, limiting their clinical applications thus far to niche indications. To achieve broader applicability, extensive biomolecular engineering is necessary to enhance the stability, tissue targetability, pharmacokinetics, and pharmacodynamics of these structures. The intricate design of these molecules also demands sophisticated process engineering techniques. Herein, we provide a collaborative from academia and industry on the pivotal role of chemical engineering in expanding the use of therapeutic oligonucleotides to treat a wider range of diseases. We discuss how the interplay between biomolecular and process engineering impacts the developability of next-generation oligonucleotide therapeutics as well as their translation from bench to bedside.

摘要

寡核苷酸疗法正在通过在基因水平上调节分子来彻底改变疾病治疗方式,为治疗曾经被认为“不可成药”的病症提供了可能性。然而,将寡核苷酸递送至肝脏以外的组织仍然是一个关键挑战,这限制了它们目前仅在特定适应症中的临床应用。为了实现更广泛的适用性,需要进行大量的生物分子工程来增强这些结构的稳定性、组织靶向性、药代动力学和药效学。这些分子的复杂设计也需要复杂的工艺工程技术。在此,我们提供了一篇来自学术界和工业界的合作文章,阐述了化学工程在扩大治疗性寡核苷酸用于治疗更广泛疾病方面的关键作用。我们讨论了生物分子工程与工艺工程之间的相互作用如何影响下一代寡核苷酸疗法的可开发性以及它们从实验室到临床的转化。

相似文献

1
Engineering Considerations for Developing Next-Generation Oligonucleotide Therapeutics.
Nat Chem Eng. 2024 Dec;1(12):741-750. doi: 10.1038/s44286-024-00152-z. Epub 2024 Dec 23.
2
Metabolic Stability and Targeted Delivery of Oligonucleotides: Advancing RNA Therapeutics Beyond The Liver.
J Med Chem. 2025 Apr 10;68(7):6870-6896. doi: 10.1021/acs.jmedchem.4c02528. Epub 2025 Jan 8.
3
Delivery of oligonucleotide-based therapeutics: challenges and opportunities.
EMBO Mol Med. 2021 Apr 9;13(4):e13243. doi: 10.15252/emmm.202013243. Epub 2021 Apr 6.
4
Oligonucleotide therapeutics for neurodegenerative diseases.
NeuroImmune Pharm Ther. 2024 Nov 18;4(1):1-11. doi: 10.1515/nipt-2024-0013. eCollection 2025 Mar.
7
Nanocarriers: Exploring the Potential of Oligonucleotide Delivery.
Curr Drug Deliv. 2024 Jun 24. doi: 10.2174/0115672018306882240618093152.
8
Biomolecular engineering for nanobio/bionanotechnology.
Nano Converg. 2017;4(1):9. doi: 10.1186/s40580-017-0103-4. Epub 2017 Apr 24.
9
Pharmacokinetics and Proceedings in Clinical Application of Nucleic Acid Therapeutics.
Mol Ther. 2021 Feb 3;29(2):521-539. doi: 10.1016/j.ymthe.2020.11.008. Epub 2020 Nov 12.
10
Hyaluronan-based delivery of therapeutic oligonucleotides for treatment of human diseases.
Expert Opin Drug Deliv. 2019 Jun;16(6):621-637. doi: 10.1080/17425247.2019.1617693. Epub 2019 May 20.

引用本文的文献

1
Fabrication of RIG-I-Activating Nanoparticles for Intratumoral Immunotherapy via Flash Nanoprecipitation.
Mol Pharm. 2025 Aug 4;22(8):4597-4611. doi: 10.1021/acs.molpharmaceut.5c00125. Epub 2025 Jul 1.

本文引用的文献

1
Targeting the transferrin receptor to transport antisense oligonucleotides across the mammalian blood-brain barrier.
Sci Transl Med. 2024 Aug 14;16(760):eadi2245. doi: 10.1126/scitranslmed.adi2245.
2
Template-independent enzymatic synthesis of RNA oligonucleotides.
Nat Biotechnol. 2025 May;43(5):762-772. doi: 10.1038/s41587-024-02244-w. Epub 2024 Jul 12.
3
Accelerating ionizable lipid discovery for mRNA delivery using machine learning and combinatorial chemistry.
Nat Mater. 2024 Jul;23(7):1002-1008. doi: 10.1038/s41563-024-01867-3. Epub 2024 May 13.
4
A Review on Commercial Oligonucleotide Drug Products.
J Pharm Sci. 2024 Jul;113(7):1749-1768. doi: 10.1016/j.xphs.2024.04.021. Epub 2024 Apr 26.
5
Identification of film-based formulations that move mRNA lipid nanoparticles out of the freezer.
Mol Ther Nucleic Acids. 2024 Mar 26;35(2):102179. doi: 10.1016/j.omtn.2024.102179. eCollection 2024 Jun 11.
6
Modern approaches to therapeutic oligonucleotide manufacturing.
Science. 2024 Apr 12;384(6692):eadl4015. doi: 10.1126/science.adl4015.
7
RNAi-based drug design: considerations and future directions.
Nat Rev Drug Discov. 2024 May;23(5):341-364. doi: 10.1038/s41573-024-00912-9. Epub 2024 Apr 3.
8
Don't shake it! Mechanical stress testing of mRNA-lipid nanoparticles.
Eur J Pharm Biopharm. 2024 May;198:114265. doi: 10.1016/j.ejpb.2024.114265. Epub 2024 Mar 15.
9
Fresh from the biotech pipeline: record-breaking FDA approvals.
Nat Biotechnol. 2024 Mar;42(3):355-361. doi: 10.1038/s41587-024-02166-7.
10
RNA interference in the era of nucleic acid therapeutics.
Nat Biotechnol. 2024 Mar;42(3):394-405. doi: 10.1038/s41587-023-02105-y. Epub 2024 Feb 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验