Stone Payton T, Kwiatkowski Alexander J, Roth Eric W, Fedorova Olga, Pyle Anna M, Wilson John T
Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States.
NUANCE BioCryo, Northwestern University, Evanston, Illinois 60208, United States.
Mol Pharm. 2025 Aug 4;22(8):4597-4611. doi: 10.1021/acs.molpharmaceut.5c00125. Epub 2025 Jul 1.
Intratumoral immunotherapy is a promising strategy for stimulating local and systemic antitumor immunity while eliminating or reducing immune-related adverse events often attendant to systemic administration. Activation of the cytosolic pattern recognition receptor retinoic acid-inducible gene I (RIG-I) at tumor sites stimulates innate immunity that can potentiate a T cell-dependent adaptive antitumor immune response. However, the activity and efficacy of 5'-triphosphate RNA (3pRNA) agonists of RIG-I are hindered by poor in vivo stability, rapid degradation, limited cellular uptake, and inefficient cytosolic delivery. To overcome these challenges, we developed RIG-I-activating nanoparticles (RANs) assembled using a flash nanoprecipitation (FNP) process to load a potent stem-loop 3pRNA (SLR) RIG-I agonist into endosome-destabilizing polymeric nanoparticles. We leveraged FNP to induce turbulent micromixing among a corona-forming poly(ethylene glycol)--(dimethylaminoethyl methacrylate--butyl methacrylate) (PEG-DB) diblock copolymer, a hydrophobic core-forming DB counterpart, and an SLR RIG-I agonist, resulting in the self-assembly of densely loaded nanoparticles that promoted endosomal escape and cytosolic delivery of 3pRNA cargo. Through optimization of polymer properties and inlet feed ratios, we developed RANs with high and improved loading efficiency and increased serum stability relative to a previously reported micelleplex formulation assembled via electrostatic complexation with PEG-DB polymers. We found that optimized RANs exhibited potent immunostimulatory activity in vitro and in vivo when delivered intratumorally. As a result, in preclinical models of MC38 colon cancer and B16.F10 melanoma, intratumoral administration of RANs suppressed tumor growth and increased survival time relative to vehicle controls. Collectively, this work demonstrates that FNP can be harnessed as a versatile and scalable process for the efficient loading of nucleic acids into polymeric nanoparticles and highlights the potential of RANs as a translationally promising platform for intralesional cancer immunotherapy.
肿瘤内免疫疗法是一种很有前景的策略,可刺激局部和全身抗肿瘤免疫,同时消除或减少全身给药时经常伴随的免疫相关不良事件。肿瘤部位胞质模式识别受体视黄酸诱导基因I(RIG-I)的激活可刺激先天免疫,从而增强T细胞依赖性适应性抗肿瘤免疫反应。然而,RIG-I的5'-三磷酸RNA(3pRNA)激动剂的活性和功效受到体内稳定性差、快速降解、细胞摄取有限和胞质递送效率低下的阻碍。为了克服这些挑战,我们开发了RIG-I激活纳米颗粒(RANs),该纳米颗粒通过快速纳米沉淀(FNP)过程组装,将一种有效的茎环3pRNA(SLR)RIG-I激动剂加载到破坏内体的聚合物纳米颗粒中。我们利用FNP在形成冠层的聚(乙二醇)-(甲基丙烯酸二甲氨基乙酯-甲基丙烯酸丁酯)(PEG-DB)二嵌段共聚物、形成疏水核心的DB对应物和SLR RIG-I激动剂之间诱导湍流微混合,导致密集加载的纳米颗粒自组装,促进3pRNA货物的内体逃逸和胞质递送。通过优化聚合物性质和进料比例,我们开发了相对于先前报道的通过与PEG-DB聚合物静电络合组装的胶束复合物制剂具有更高和改进的加载效率以及更高血清稳定性的RANs。我们发现,优化后的RANs在瘤内给药时在体外和体内均表现出强大的免疫刺激活性。因此,在MC38结肠癌和B16.F10黑色素瘤的临床前模型中,与载体对照相比,瘤内给药RANs可抑制肿瘤生长并延长生存时间。总的来说,这项工作表明FNP可作为一种通用且可扩展的过程,用于将核酸高效加载到聚合物纳米颗粒中,并突出了RANs作为肿瘤内癌症免疫治疗具有转化前景的平台的潜力。