Suppr超能文献

用于热稳定卤化铅钙钛矿太阳能电池的大体积阳离子修饰界面

Bulky Cation-Modified Interfaces for Thermally Stable Lead Halide Perovskite Solar Cells.

作者信息

Sharma Sakshi, Perini Carlo A R, Brea Courtney, Wieghold Sarah, Li Ruipeng, Dou Letian, Facchetti Antonio, Hu Guoxiang, Correa-Baena Juan-Pablo

机构信息

School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.

Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States.

出版信息

Chem Mater. 2025 May 15;37(10):3676-3684. doi: 10.1021/acs.chemmater.4c03468. eCollection 2025 May 27.

Abstract

Charged conjugated organic molecules offer promising prospects for reducing nonradiative recombination at interfaces in perovskite solar cells, while protecting the active layer from moisture. However, several studies have shown that the heat-induced diffusion of these cations leads to irreversible solar cell degradation. Passivation molecules for perovskite can reconstruct the film surface into lower-dimensional phases when exposed to thermal stress, impeding charge extraction and affecting the photoconversion efficiency (PCE) of devices. In this work, we study how molecular interactions between passivation molecules and 3D CsFAPbI perovskite impact stability and charge extraction at the perovskite/hole transport layer interfaces. Two model π-conjugated molecules are studied: 2-([2,2'-bithiophen]-5-yl)-ethan-1-aminium iodide (2TI) and 2-(3‴,4'-dimethyl-[2,2':5',2″:5″,2‴-quaterthiophen]-5-yl)-ethan-1-ammonium iodide (4TmI). We demonstrate that the speed of surface layer reconstruction under thermal stress can be controlled by the cation size and correlate these structural changes with the solar cell performance and stability. Devices treated with 2TI and 4TmI achieve PCEs over 21% and maintain their performance under thermal stress. Our findings demonstrate that thermal stability in PSCs can be achieved via the design engineering of passivation agents, offering a blueprint for developing next-generation passivation molecules.

摘要

带电共轭有机分子为减少钙钛矿太阳能电池界面处的非辐射复合提供了广阔前景,同时还能保护活性层免受水分影响。然而,多项研究表明,这些阳离子的热诱导扩散会导致太阳能电池不可逆降解。钙钛矿的钝化分子在受到热应力时会将薄膜表面重构为低维相,从而阻碍电荷提取并影响器件的光电转换效率(PCE)。在这项工作中,我们研究了钝化分子与3D CsFAPbI钙钛矿之间的分子相互作用如何影响钙钛矿/空穴传输层界面处的稳定性和电荷提取。我们研究了两种模型π共轭分子:2-([2,2'-联噻吩]-5-基)-乙-1-碘化铵(2TI)和2-(3‴,4'-二甲基-[2,2':5',2″:5″,2‴-四噻吩]-5-基)-乙-1-碘化铵(4TmI)。我们证明,热应力下表面层重构的速度可以通过阳离子大小来控制,并将这些结构变化与太阳能电池的性能和稳定性相关联。用2TI和4TmI处理的器件实现了超过21%的光电转换效率,并在热应力下保持其性能。我们的研究结果表明,通过钝化剂的设计工程可以实现钙钛矿太阳能电池的热稳定性,为开发下一代钝化分子提供了蓝图。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef8f/12120914/4230813e2ca9/cm4c03468_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验