Choi Yong Kyu, Holsgrove Kristina, Watson Andrea, Aronson Benjamin L, Lenox Megan K, Shvilberg Liron, Zhou Chuanzhen, Fields Shelby S, Wang Shihao, McDonnell Stephen J, Kumar Amit, Ihlefeld Jon F
Department of Materials Science and Engineering, University of Virginia, Charlottesville, Virginia 22904, United States.
School of Mathematics and Physics, Queen's University Belfast, Belfast, Northern Ireland BT7 1NN, U.K.
ACS Omega. 2025 May 14;10(20):20524-20535. doi: 10.1021/acsomega.5c01112. eCollection 2025 May 27.
Hafnium oxide-based thin films, in particular hafnium zirconium oxide (HZO), have potential for applications in nonvolatile memory and energy harvesting. Atomic layer deposition (ALD) is the most widely used method for HZO deposition due to its precise thickness control and ability to provide conformal coverage. Previous studies have shown the effects of different metal precursors, oxidizer precursors, and process temperatures on the ferroelectric properties of HZO. However, no mechanism has been identified to describe the different phase stabilities as the metal precursor purge time varies. This study investigates how varying the metal precursor purge time during plasma-enhanced ALD (PE-ALD) influences the phases and properties of the HZO thin films. Grazing incidence X-ray diffraction, Fourier transform infrared spectroscopy, and scanning transmission electron microscopy are used to study the changes in phase of HZO with variation of the metal precursor purge time during the PE-ALD process. The phases observed are correlated with polarization and relative permittivity responses under an electric field, including wake-up and endurance effects. The resulting phases and properties are linked to changes in composition, as measured using time-of-flight secondary ion mass spectrometry and X-ray photoelectron spectroscopy. It is shown that short metal precursor purge times result in increased carbon and nitrogen impurities and stabilization of the antipolar phase. Long purge times lead to films comprising predominantly the ferroelectric phase.
基于氧化铪的薄膜,特别是铪锆氧化物(HZO),在非易失性存储器和能量收集方面具有应用潜力。原子层沉积(ALD)是最广泛用于沉积HZO的方法,因为它能精确控制厚度并提供保形覆盖。先前的研究已经表明了不同的金属前驱体、氧化剂前驱体和工艺温度对HZO铁电性能的影响。然而,尚未确定一种机制来描述随着金属前驱体吹扫时间的变化而产生的不同相稳定性。本研究调查了在等离子体增强原子层沉积(PE-ALD)过程中改变金属前驱体吹扫时间如何影响HZO薄膜的相和性能。掠入射X射线衍射、傅里叶变换红外光谱和扫描透射电子显微镜被用于研究在PE-ALD过程中随着金属前驱体吹扫时间的变化HZO相的变化。观察到的相与电场下的极化和相对介电常数响应相关,包括唤醒和耐久性效应。所得的相和性能与使用飞行时间二次离子质谱和X射线光电子能谱测量的成分变化相关。结果表明,短的金属前驱体吹扫时间会导致碳和氮杂质增加以及反极相的稳定。长的吹扫时间会导致薄膜主要由铁电相组成。