Suppr超能文献

基于微米级CT扫描的碎屑岩气藏微孔结构定量表征与渗流模拟

Quantitative Characterization and Flow Simulation of Micropore Structure in Clastic Gas Reservoirs Based on Micron CT Scanning.

作者信息

Liu Jiaming, Wang Ruifei, Song Peng, Li Yutong, Zheng Sen

机构信息

College of Petroleum Engineering, Xi'an Shiyou University, Xi'an, Shaanxi 710065, China.

PetroChina Jilin Oilfield Company Exploration and Development Research Institute, Songyuan, Jilin 138000, China.

出版信息

ACS Omega. 2025 May 14;10(20):20686-20700. doi: 10.1021/acsomega.5c01569. eCollection 2025 May 27.

Abstract

This study employed high-resolution CT scanning and Avizo software algorithms to analyze the microscopic pore structure of the clastic rock reservoir in the Yingcheng Formation, Block D, southeastern Songliao Basin, China, and its impact on fluid flow, constructing a high-precision three-dimensional digital rock model. The optimal representative elementary volume (REV) was identified as 400 × 400 × 400 voxels. Using this as a basis, the ″maximum ball″ algorithm extracted the pore network model, allowing for quantitative characterization of its topological features and PNM-based single-phase flow simulations. Furthermore, two-phase flow simulations of CO displacing CH were performed via the AVIZO-FLUENT interactive coupling technology. Results show that the reservoir exhibits significant heterogeneity, with pore radii mainly between 2 and 7 μm and throat radii from 0.5 to 3 μm, reflecting a typical ″large pore, small throat″ characteristic. Throat lengths are primarily between 10 and 25 μm, while the coordination number is mainly within 1-4. Permeability correlates positively with pore-throat radius and throat length but negatively with tortuosity and fractal dimension. Single-phase flow simulations indicate that pore structure complexity significantly affects seepage behavior. The numerically simulated permeability deviates from experimental measurements by no more than 12.5%, confirming the reliability of the simulation approach. Two-phase flow simulations show that the CO displacement is significantly affected by pore structure complexity and heterogeneity, progressing through three stages: uniform front advancement, fingering development, and residual gas retention. Residual CH mainly accumulates at pore edges and corners, with final CO and residual CH saturations stabilizing at 94.74 and 5.26%, respectively. Integrating digital rock technology with multiscale flow simulations, this study refines the characterization of complex reservoir pore structures and elucidates their control over fluid migration. These findings provide a scientific basis for optimizing CO geological storage and enhancing gas reservoir recovery while also supporting development strategies for low-permeability reservoirs.

摘要

本研究采用高分辨率CT扫描和Avizo软件算法,分析了中国松辽盆地东南部D区块营城组碎屑岩储层的微观孔隙结构及其对流体流动的影响,构建了高精度三维数字岩石模型。确定最优代表性单元体(REV)为400×400×400体素。以此为基础,采用“最大球”算法提取孔隙网络模型,从而对其拓扑特征进行定量表征,并基于孔隙网络模型进行单相流模拟。此外,通过AVIZO-FLUENT交互式耦合技术进行了CO置换CH的两相流模拟。结果表明,该储层具有显著的非均质性,孔隙半径主要在2至7μm之间,喉道半径为0.5至3μm,呈现典型的“大孔、细喉”特征。喉道长度主要在10至25μm之间,配位数主要在1至4之间。渗透率与孔喉半径和喉道长度呈正相关,与迂曲度和分形维数呈负相关。单相流模拟表明,孔隙结构复杂性对渗流行为有显著影响。数值模拟渗透率与实验测量值的偏差不超过12.5%,证实了模拟方法的可靠性。两相流模拟表明,CO置换受孔隙结构复杂性和非均质性的显著影响,经历均匀前缘推进、指进发展和残余气滞留三个阶段。残余CH主要积聚在孔隙边缘和角落,最终CO和残余CH饱和度分别稳定在94.74%和5.26%。本研究将数字岩石技术与多尺度流动模拟相结合, 细化了复杂储层孔隙结构的表征, 阐明了其对流体运移的控制作用。这些研究结果为优化CO2地质封存和提高气藏采收率提供了科学依据,同时也为低渗透油藏的开发策略提供了支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b69/12120641/d5e8a16468bd/ao5c01569_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验