Lima K A L, Alves R A F, Moujaes E A, Dias A C, Galvõo D S, Pereira M L, Ribeiro Luiz A
Department of Applied Physics and Center for Computational Engineering and Sciences, State University of Campinas, Campinas, Sõo Paulo, 13083-859, Brazil.
Institute of Physics, University of Brasília, 70910-900, Brasília, Brazil.
Nanoscale. 2025 Jun 19;17(24):14660-14675. doi: 10.1039/d5nr01282a.
This study comprehensively characterizes, with suggested applications, a novel two-dimensional carbon allotrope, C, using density functional theory and machine learning-based molecular dynamics. This nanomaterial is derived from naphthalene and bicyclopropylidene molecules, forming a planar configuration with sp hybridization and featuring 3-, 4-, 6-, 8-, and 10-membered rings. The cohesive energy of -7.1 eV per atom, the absence of imaginary frequencies in the phonon spectrum, and the retention of the system's topology after molecular dynamics simulations confirm the structural stability of C. The nanomaterial exhibits a semiconducting behavior with a direct band gap of 0.59 eV and anisotropic optical absorption in the direction. Assuming a complete absorption of incident light, it registers a power conversion efficiency of 13%, demonstrating relatively good potential for applications in solar energy conversion. Excluding the vacuum effect along the non-periodic direction, the planar lattice thermal conductivity reaches ultralow values of 1.90 × 10 W (m K), 0.90 × 10, and 0.59 × 10 for = 300 K, 600 K, and 1000 K, respectively along both and directions. Very close to the Fermi level, the thermoelectric figure of merit () can reach a maximum value of 0.93 at room temperatures along both planar directions, indicating an excellent ability to convert a temperature gradient into electrical power. Additionally, C demonstrates high mechanical strength, with Young's modulus values of 500 GPa and 630 GPa in the and directions, respectively. Insights into the electronic, optical, thermoelectric, and mechanical properties of C reveal its promising capability for energy conversion applications.
本研究利用密度泛函理论和基于机器学习的分子动力学,全面表征了一种新型二维碳同素异形体C,并提出了其应用建议。这种纳米材料由萘和双环丙叉分子衍生而来,形成具有sp杂化的平面构型,具有3、4、6、8和10元环。每个原子-7.1 eV的内聚能、声子谱中不存在虚频以及分子动力学模拟后系统拓扑结构的保留证实了C的结构稳定性。这种纳米材料表现出半导体行为,直接带隙为0.59 eV,在 方向具有各向异性光吸收。假设完全吸收入射光,其功率转换效率为13%,在太阳能转换应用中显示出相对良好的潜力。排除沿非周期性 方向的真空效应,平面晶格热导率 在300 K、600 K和1000 K时,沿 和 方向分别达到1.90×10 W/(m·K)、0.90×10 和0.59×10 的超低值。非常接近费米能级时,室温下沿两个平面方向的热电优值()可达到最大值0.93,表明其具有将温度梯度转化为电能的优异能力。此外,C表现出高机械强度,在 和 方向的杨氏模量值分别为500 GPa和630 GPa。对C的电子、光学、热电和机械性能的深入了解揭示了其在能量转换应用中的广阔前景。