Suppr超能文献

从高通量宏基因组测序数据中对病毒基因组进行生物信息学鉴定

Bioinformatic Identification of Viral Genomes from High-Throughput Metagenomic Sequencing Data.

作者信息

da Silva Alexandre Freitas, Wallau Gabriel Luz

机构信息

Entomology Department and Bioinformatic Core Facility, Instituto Aggeu Magalhães (IAM), Fundação Oswaldo Cruz (FIOCRUZ), Cidade Universitária, Recife, Pernambuco, Brazil.

Universidade Federal de Santa Maria (UFSM), Santa Maria, Rio Grande do Sul, Brazil.

出版信息

Methods Mol Biol. 2025;2927:1-22. doi: 10.1007/978-1-0716-4546-8_1.

Abstract

Virus identification has historically been performed through cell culture isolation and low-throughput methodologies that are limited often requiring previous information about the investigated viruses. These classical virological methods have been pivotal to many discoveries, but overall, they have a limited capacity for characterization of highly divergent and novel viruses. Nowadays, new technologies such as next-generation sequencing have revolutionized the virology field, enabling unbiased high-throughput viral genome characterization. But although the sequencing bottleneck has been surpassed, we could not say the same for the bioinformatics bottleneck of fishing new viral genomes from these large datasets littered with host and other microbes sequencing data. Here, we describe a bioinformatic framework to process metagenomic or metatranscriptomic data, aiming to assemble, identify, and study the evolutionary relationship of viral sequences and genomes.

摘要

病毒鉴定历来是通过细胞培养分离和低通量方法进行的,这些方法往往受到限制,通常需要有关所研究病毒的先前信息。这些经典的病毒学方法对许多发现起到了关键作用,但总体而言,它们在表征高度分化的新型病毒方面能力有限。如今,诸如新一代测序等新技术已经彻底改变了病毒学领域,能够实现无偏差的高通量病毒基因组表征。但是,尽管测序瓶颈已被突破,但从这些充斥着宿主和其他微生物测序数据的大型数据集中筛选新病毒基因组的生物信息学瓶颈却并非如此。在这里,我们描述了一个用于处理宏基因组或宏转录组数据的生物信息学框架,旨在组装、识别和研究病毒序列与基因组的进化关系。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验