Grayli Sasan V, Patel Tarun, van Kasteren Brad, Kokilathasan Sathursan, Tekcan Burak, Alan Tam Man Chun, Losin William Fredrick, Odinotski Sarah, Tsen Adam W, Wasilewski Zbigniew R, Reimer Michael E
Institute for Quantum Computing, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
Nano Lett. 2025 Jun 11;25(23):9362-9368. doi: 10.1021/acs.nanolett.5c01777. Epub 2025 Jun 2.
The ability to detect light with high efficiency is an important device metric for single-photon detectors and cameras, essential for applications ranging from quantum communication to biomedical imaging. However, these photodetectors have limited detection efficiency in the 850-1100 nm wavelength range, known as the 'valley of death'. Here, we demonstrate a near-perfect absorber in the 'valley of death' using a semiconductor metasurface with spectral and spatial selectivity on a high refractive index substrate. Our design leverages higher order optical modes of InGaAs resonators to generate Kerker interference at the target wavelength of 920 nm, which leads to a measured peak absorption efficiency of ∼94%. In addition, numerical calculations show that our design enables spatial control of the absorption profile within the resonators, which is promising for improving response time. Our approach offers tunability over a desired spectral range and paves the way for development of high-performance photodetectors.
对于单光子探测器和相机而言,高效探测光的能力是一项重要的器件指标,这对于从量子通信到生物医学成像等一系列应用至关重要。然而,这些光电探测器在850 - 1100纳米波长范围内的探测效率有限,该范围被称为“死亡谷”。在此,我们利用在高折射率衬底上具有光谱和空间选择性的半导体超表面,展示了一种在“死亡谷”中的近乎完美的吸收体。我们的设计利用了InGaAs谐振器的高阶光学模式,在920纳米的目标波长处产生克尔干涉,这导致测得的峰值吸收效率约为94%。此外,数值计算表明,我们的设计能够对谐振器内的吸收分布进行空间控制,这对于缩短响应时间很有前景。我们的方法在所需光谱范围内具有可调性,为高性能光电探测器的开发铺平了道路。