Arup Evan Modak, Liu Li, Mekonnen Haben, Bosomtwi Dominic, Babicheva Viktoriia E
Department of Electrical and Computer Engineering, University of New Mexico, MSC01 1100, 1 University of New Mexico, Albuquerque, NM 87131, USA.
Sandia National Laboratories, 1515 Eubank SE, Albuquerque, NM 87123, USA.
Nanomaterials (Basel). 2025 Mar 21;15(7):477. doi: 10.3390/nano15070477.
Metasurfaces, composed of engineered nanoantennas, enable unprecedented control over electromagnetic waves by leveraging multipolar resonances to tailor light-matter interactions. This review explores key physical mechanisms that govern their optical properties, including the role of multipolar resonances in shaping metasurface responses, the emergence of bound states in the continuum (BICs) that support high-quality factor modes, and the Purcell effect, which enhances spontaneous emission rates at the nanoscale. These effects collectively underpin the design of advanced photonic devices with tailored spectral, angular, and polarization-dependent properties. This review discusses recent advances in metasurfaces and applications based on them, highlighting research that employs full-wave numerical simulations, analytical and semi-analytic techniques, multipolar decomposition, nanofabrication, and experimental characterization to explore the interplay of multipolar resonances, bound and quasi-bound states, and enhanced light-matter interactions. A particular focus is given to metasurface-enhanced photodetectors, where structured nanoantennas improve light absorption, spectral selectivity, and quantum efficiency. By integrating metasurfaces with conventional photodetector architectures, it is possible to enhance responsivity, engineer photocarrier generation rates, and even enable functionalities such as polarization-sensitive detection. The interplay between multipolar resonances, BICs, and emission control mechanisms provides a unified framework for designing next-generation optoelectronic devices. This review consolidates recent progress in these areas, emphasizing the potential of metasurface-based approaches for high-performance sensing, imaging, and energy-harvesting applications.
超表面由工程纳米天线组成,通过利用多极共振来定制光与物质的相互作用,从而实现对电磁波前所未有的控制。本综述探讨了支配其光学特性的关键物理机制,包括多极共振在塑造超表面响应中的作用、支持高品质因子模式的连续统中的束缚态(BICs)的出现,以及珀塞尔效应,该效应增强了纳米尺度下的自发发射率。这些效应共同支撑了具有定制光谱、角度和偏振相关特性的先进光子器件的设计。本综述讨论了超表面及其应用的最新进展,重点介绍了采用全波数值模拟、分析和半分析技术、多极分解、纳米制造以及实验表征来探索多极共振、束缚态和准束缚态以及增强的光与物质相互作用之间相互作用的研究。特别关注超表面增强型光电探测器,其中结构化纳米天线可改善光吸收、光谱选择性和量子效率。通过将超表面与传统光电探测器架构集成,可以提高响应度、设计光载流子产生率,甚至实现诸如偏振敏感检测等功能。多极共振、BICs和发射控制机制之间的相互作用为设计下一代光电器件提供了一个统一的框架。本综述巩固了这些领域的最新进展,强调了基于超表面的方法在高性能传感、成像和能量收集应用中的潜力。