Dong Tian, Liang Jiujiu, Camayd-Muñoz Sarah, Liu Yueyang, Tang Haoning, Kita Shota, Chen Peipei, Wu Xiaojun, Chu Weiguo, Mazur Eric, Li Yang
State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, 100084, Beijing, China.
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.
Light Sci Appl. 2021 Jan 7;10(1):10. doi: 10.1038/s41377-020-00436-y.
Light travels in a zero-index medium without accumulating a spatial phase, resulting in perfect spatial coherence. Such coherence brings several potential applications, including arbitrarily shaped waveguides, phase-mismatch-free nonlinear propagation, large-area single-mode lasers, and extended superradiance. A promising platform to achieve these applications is an integrated Dirac-cone material that features an impedance-matched zero index. Although an integrated Dirac-cone material eliminates ohmic losses via its purely dielectric structure, it still entails out-of-plane radiation loss, limiting its applications to a small scale. We design an ultra-low-loss integrated Dirac cone material by achieving destructive interference above and below the material. The material consists of a square array of low-aspect-ratio silicon pillars embedded in silicon dioxide, featuring easy fabrication using a standard planar process. This design paves the way for leveraging the perfect spatial coherence of large-area zero-index materials in linear, nonlinear, and quantum optics.
光在零折射率介质中传播时不会积累空间相位,从而产生完美的空间相干性。这种相干性带来了几个潜在的应用,包括任意形状的波导、无相位失配的非线性传播、大面积单模激光器和扩展超辐射。实现这些应用的一个有前景的平台是具有阻抗匹配零折射率的集成狄拉克锥材料。尽管集成狄拉克锥材料通过其纯介电结构消除了欧姆损耗,但它仍然存在面外辐射损耗,将其应用限制在小尺度范围内。我们通过在材料上方和下方实现相消干涉来设计一种超低损耗的集成狄拉克锥材料。该材料由嵌入二氧化硅中的低纵横比硅柱的方形阵列组成,具有易于使用标准平面工艺制造的特点。这种设计为在线性、非线性和量子光学中利用大面积零折射率材料的完美空间相干性铺平了道路。