Suppr超能文献

利用电荷态控制在原子长度尺度上探究分子性质

Probing Molecular Properties at Atomic Length Scale Using Charge-State Control.

作者信息

Patera Laerte L, Fatayer Shadi, Repp Jascha, Gross Leo

机构信息

Department of Physical Chemistry, University of Innsbruck, 6020 Innsbruck, Austria.

Applied Physics Program, Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.

出版信息

Chem Rev. 2025 Jun 25;125(12):5830-5847. doi: 10.1021/acs.chemrev.4c00899. Epub 2025 Jun 2.

Abstract

The charge state plays a critical role in governing the structural, electronic, and chemical properties of molecules. Controlling the charge state of individual molecules provides a powerful tool for exploring fundamental processes, such as redox reactions, selective bond rearrangements, molecular excitations, charge transfer, and modulation of reaction pathways at the single-molecule level. Recent advancements in scanning tunneling microscopy (STM) and atomic force microscopy (AFM) have enabled precise and stable manipulation of molecular charge states, allowing for detailed, high-resolution studies of charge-state-dependent phenomena. In this review, we discuss the principles and methodologies for charge-state control in STM and AFM, with a focus on strategies for stabilizing charge states in a controlled experimental environment. We also examine key advancements in the ability to detect and manipulate intra- and intermolecular charge transfer, providing insights into charge-mediated processes, such as structural rearrangements, electronic states, and reactivity at the atomic scale. Finally, we highlight the potential of charge-state control to probe electronic excited states and resolve spin-coherence in individual molecules.

摘要

电荷态在决定分子的结构、电子和化学性质方面起着关键作用。控制单个分子的电荷态为探索诸如氧化还原反应、选择性键重排、分子激发、电荷转移以及单分子水平上反应途径的调控等基本过程提供了一个强大的工具。扫描隧道显微镜(STM)和原子力显微镜(AFM)的最新进展使得能够精确且稳定地操纵分子电荷态,从而实现对电荷态相关现象的详细、高分辨率研究。在本综述中,我们讨论了STM和AFM中电荷态控制的原理和方法,重点关注在可控实验环境中稳定电荷态的策略。我们还研究了检测和操纵分子内和分子间电荷转移能力方面的关键进展,深入了解电荷介导的过程,如原子尺度上的结构重排、电子态和反应性。最后,我们强调了电荷态控制在探测电子激发态和解析单个分子中的自旋相干性方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9ec/12203467/0722631cc4f1/cr4c00899_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验