Suppr超能文献

用于描述性建模的变量选择方法。

Variable selection methods for descriptive modeling.

作者信息

Dharmaratne A D V Tharkeshi T, De Livera Alysha, Georgiou Stelios, Stylianou Stella

机构信息

School of Science, RMIT University, Melbourne, Victoria, Australia.

Engineering and Mathematical Sciences, La Trobe University, Bundoora, Victoria, Australia.

出版信息

PLoS One. 2025 Jun 2;20(6):e0321601. doi: 10.1371/journal.pone.0321601. eCollection 2025.

Abstract

Variable selection methods are widely used in observational studies. While many penalty-based statistical methods introduced in recent decades have primarily focused on prediction, classical statistical methods remain the standard approach in applied research and education. In this study, we evaluated the variable selection performance of several widely used classical and modern methods for descriptive modeling, using both simulated and real data. A novel aspect of our research is the incorporation of a statistical approach inspired by the supersaturated design-based factor screening method in an observational setting. The methods were evaluated based on Type I and Type II error rates, the average number of predictors selected, variable inclusion frequency, absolute bias, and root mean square error. The detailed results of these evaluations are presented, and the methods' performance is discussed across various simulation scenarios and in application to real data.

摘要

变量选择方法在观察性研究中被广泛使用。虽然近几十年来引入的许多基于惩罚的统计方法主要侧重于预测,但经典统计方法仍然是应用研究和教育中的标准方法。在本研究中,我们使用模拟数据和真实数据评估了几种广泛使用的经典和现代方法在描述性建模中的变量选择性能。我们研究的一个新颖之处是在观察性环境中纳入了一种受基于超饱和设计的因子筛选方法启发的统计方法。这些方法基于I型和II型错误率、所选预测变量的平均数量、变量包含频率、绝对偏差和均方根误差进行评估。本文给出了这些评估的详细结果,并讨论了这些方法在各种模拟场景下以及应用于真实数据时的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b45c/12129470/73a6a4a84bd9/pone.0321601.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验