Suppr超能文献

人类单克隆抗体对XBB.1.5新冠单价疫苗反应的图谱绘制:一项B细胞分析

Mapping of human monoclonal antibody responses to XBB.1.5 COVID-19 monovalent vaccines: a B cell analysis.

作者信息

Fantin Raianna F, Clark Jordan J, Cohn Hallie, Jaiswal Deepika, Bozarth Bailey, Rao Vishal, Civljak Alesandro, Lobo Igor, Nardulli Jessica R, Srivastava Komal, Yong Jeremy S, Andreata-Santos Robert, Bushfield Kaitlyn, Lee Edward S, Singh Gagandeep, Kleinstein Steven H, Krammer Florian, Simon Viviana, Bajic Goran, Coelho Camila H

机构信息

Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

出版信息

Lancet Microbe. 2025 May 30:101103. doi: 10.1016/j.lanmic.2025.101103.

Abstract

BACKGROUND

The rapid emergence of highly transmissible and immune-evasive SARS-CoV-2 variants has required the reformulation of COVID-19 vaccines to target these evolving threats. Although previous infections and booster vaccinations can boost variant neutralisation, it remains uncertain whether monovalent vaccines-delivered via mRNA or protein-based platforms-can trigger novel B-cell responses specific to omicron XBB.1.5 variants. We sought to address this uncertainty by characterising the antibody repertoire of individuals receiving a monovalent booster vaccine.

METHODS

In this observational study, we analysed the genetic antibody repertoire of 603 individual plasmablasts from five individuals (recruited at the Icahn School of Medicine at Mount Sinai, New York, NY, USA, from STUDY-16-01215/IRB-16-00971 and STUDY-20-00442/IRB-20-03374) vaccinated with a monovalent XBB.1.5 vaccine, either through mRNA (Moderna or Pfizer-BioNTech; participants 1, 2, and 3) or adjuvanted protein (Novavax; participants 4 and 5) platforms. Before XBB.1.5 booster vaccination, all participants received mRNA-based priming and booster vaccine with ancestral SARS-CoV-2 and four of the five participants had a breakthrough omicron variant infection. We expressed 100 human monoclonal antibodies (mAbs; 50 from participants 1, 2, and 3, and 50 from participants 4 and 5) and evaluated their binding and neutralisation against various SARS-CoV-2 variants, including JN.1. We then selected four mAbs for in-vivo protection experiments by passive immunisation and viral challenge, and cryo-electron microscopy with two selected mAbs complexed with the XBB.1.5 spike (S) protein to determine their structures and binding interactions.

FINDINGS

Between October and November, 2023, we enrolled three male and two female participants (mean age 46 years) all of whom were White. We identified 21 binding mAbs and tested their neutralisation capacity against ancestral SARS-CoV-2, XBB.1.5, and JN.1. From the six neutralising mAbs we characterised, we selected three (M2, M27, and M39) for in-vivo protection studies, along with one broadly binding antibody (M15), finding that three neutralising mAbs offered full protection against morbidity from XBB.1.5. M27 also displayed robust protection against the ancestral and JN.1 strains, and M39 offered partial protection from JN.1. Among these, we identified two standout antibodies: M2 and M39. M2 was uniquely specific to XBB.1.5, and M39 demonstrated the ability to bind and neutralise both XBB.1.5 and JN.1 strains. Using high-resolution cryo-electron microscopy, we mapped the binding sites of M2 and M39 on the XBB.1.5 S glycoprotein, uncovering the precise molecular interactions that dictate their specificity.

INTERPRETATION

Our findings offer key molecular insights into whether strain-specific boosters elicit sufficient protection against SARS-CoV-2 emerging variants. This knowledge can inform decisions on booster design and strategies to enhance preparedness to evolving viral threats.

FUNDING

Icahn School of Medicine at Mount Sinai; National Institutes of Health (NIH) FIRST; Laura and Isaac Perlmutter Cancer Center Support Grant; National Institute of Allergy and Infectious Diseases; Human Immunology Project Consortium by NIH; the São Paulo Research Foundation; the National Heart, Lung, and Blood Institute of the NIH; Irma T Hirschl and Monique Weill-Caulier Trust; and the Collaborative Influenza Vaccine Innovation Centers.

摘要

背景

高传播性和免疫逃逸性的严重急性呼吸综合征冠状病毒2(SARS-CoV-2)变体迅速出现,这就需要重新设计2019冠状病毒病(COVID-19)疫苗,以应对这些不断演变的威胁。尽管先前的感染和加强接种可以增强对变体的中和作用,但通过信使核糖核酸(mRNA)或基于蛋白质的平台提供的单价疫苗是否能引发针对奥密克戎XBB.1.5变体的新型B细胞反应仍不确定。我们试图通过分析接受单价加强疫苗个体的抗体库来解决这一不确定性。

方法

在这项观察性研究中,我们分析了来自五名个体(从美国纽约西奈山伊坎医学院的STUDY-16-01215/IRB-16-00971和STUDY-20-00442/IRB-20-03374招募)的603个个体浆母细胞的基因抗体库,这些个体接种了单价XBB.1.5疫苗,通过mRNA(莫德纳或辉瑞-生物新技术公司;参与者1、2和3)或佐剂蛋白(诺瓦瓦克斯公司;参与者4和5)平台。在接种XBB.1.5加强疫苗之前,所有参与者都接受了基于mRNA的初免和加强疫苗接种,使用的是原始SARS-CoV-2毒株,五名参与者中有四名曾发生突破性奥密克戎变体感染。我们表达了100种人单克隆抗体(mAb;参与者1、2和3的50种,参与者4和5的50种),并评估了它们对包括JN.1在内的各种SARS-CoV-2变体的结合和中和作用。然后,我们选择了四种mAb进行体内保护实验,通过被动免疫和病毒攻击,以及对两种选定的与XBB.1.5刺突(S)蛋白复合的mAb进行冷冻电子显微镜观察,以确定它们的结构和结合相互作用。

研究结果

2023年10月至11月,我们招募了三名男性和两名女性参与者(平均年龄46岁),他们均为白人。我们鉴定出21种结合mAb,并测试了它们对原始SARS-CoV-2、XBB.1.5和JN.1的中和能力。从我们鉴定的六种中和mAb中,我们选择了三种(M2、M27和M39)进行体内保护研究,以及一种广泛结合抗体(M15),发现三种中和mAb对XBB.1.5引起的发病提供了完全保护。M27对原始毒株和JN.1毒株也表现出强大的保护作用,M39对JN.1提供了部分保护。在这些抗体中,我们鉴定出两种突出的抗体:M2和M39。M2对XBB.1.5具有独特的特异性,M39表现出结合和中和XBB.1.5和JN.1毒株的能力。使用高分辨率冷冻电子显微镜,我们绘制了M2和M39在XBB.1.5 S糖蛋白上的结合位点,揭示了决定它们特异性的精确分子相互作用。

解读

我们的研究结果为特定毒株加强疫苗是否能对SARS-CoV-2新兴变体产生足够的保护提供了关键的分子见解。这些知识可为加强疫苗设计和增强对不断演变的病毒威胁的防范策略的决策提供参考。

资助

西奈山伊坎医学院;美国国立卫生研究院(NIH)FIRST;劳拉和艾萨克·佩尔穆特癌症中心支持基金;国家过敏和传染病研究所;NIH人类免疫学项目联盟;圣保罗研究基金会;NIH国家心肺血液研究所;伊尔玛·T·赫希尔和莫妮克·韦尔-考利尔信托基金;以及协作流感疫苗创新中心。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验