Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA.
Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA.
Nature. 2023 May;617(7961):592-598. doi: 10.1038/s41586-023-06025-4. Epub 2023 Apr 3.
The primary two-dose SARS-CoV-2 mRNA vaccine series are strongly immunogenic in humans, but the emergence of highly infectious variants necessitated additional doses and the development of vaccines aimed at the new variants. SARS-CoV-2 booster immunizations in humans primarily recruit pre-existing memory B cells. However, it remains unclear whether the additional doses induce germinal centre reactions whereby re-engaged B cells can further mature, and whether variant-derived vaccines can elicit responses to variant-specific epitopes. Here we show that boosting with an mRNA vaccine against the original monovalent SARS-CoV-2 mRNA vaccine or the bivalent B.1.351 and B.1.617.2 (Beta/Delta) mRNA vaccine induced robust spike-specific germinal centre B cell responses in humans. The germinal centre response persisted for at least eight weeks, leading to significantly more mutated antigen-specific bone marrow plasma cell and memory B cell compartments. Spike-binding monoclonal antibodies derived from memory B cells isolated from individuals boosted with either the original SARS-CoV-2 spike protein, bivalent Beta/Delta vaccine or a monovalent Omicron BA.1-based vaccine predominantly recognized the original SARS-CoV-2 spike protein. Nonetheless, using a more targeted sorting approach, we isolated monoclonal antibodies that recognized the BA.1 spike protein but not the original SARS-CoV-2 spike protein from individuals who received the mRNA-1273.529 booster; these antibodies were less mutated and recognized novel epitopes within the spike protein, suggesting that they originated from naive B cells. Thus, SARS-CoV-2 booster immunizations in humans induce robust germinal centre B cell responses and can generate de novo B cell responses targeting variant-specific epitopes.
两剂主要的 SARS-CoV-2 mRNA 疫苗系列在人类中具有很强的免疫原性,但高传染性变体的出现需要额外的剂量和针对新变体的疫苗开发。人类的 SARS-CoV-2 加强免疫主要招募预先存在的记忆 B 细胞。然而,目前尚不清楚额外的剂量是否会诱导生发中心反应,从而使重新激活的 B 细胞进一步成熟,以及变体衍生的疫苗是否能引发针对变体特异性表位的反应。在这里,我们表明,用针对原始单价 SARS-CoV-2 mRNA 疫苗或二价 B.1.351 和 B.1.617.2(Beta/Delta)mRNA 疫苗的 mRNA 疫苗进行加强免疫,会在人类中诱导强烈的刺突特异性生发中心 B 细胞反应。生发中心反应至少持续八周,导致突变的抗原特异性骨髓浆细胞和记忆 B 细胞区室显著增加。从接受原始 SARS-CoV-2 刺突蛋白、二价 Beta/Delta 疫苗或单价 Omicron BA.1 疫苗加强免疫的个体中分离出的记忆 B 细胞衍生的 Spike 结合单克隆抗体主要识别原始 SARS-CoV-2 刺突蛋白。尽管如此,使用更具针对性的分选方法,我们从接受 mRNA-1273.529 加强免疫的个体中分离出了识别 BA.1 刺突蛋白而不识别原始 SARS-CoV-2 刺突蛋白的单克隆抗体;这些抗体突变较少,识别刺突蛋白内的新表位,表明它们起源于幼稚 B 细胞。因此,SARS-CoV-2 加强免疫在人类中诱导强烈的生发中心 B 细胞反应,并能产生针对变体特异性表位的新 B 细胞反应。
bioRxiv. 2022-9-22
Nature. 2022-2
Pharmaceutics. 2025-7-12
Immunol Rev. 2022-9
N Engl J Med. 2022-5-19
N Engl J Med. 2022-4-21