文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

新冠疫情期间的病毒动力学模型:我们是否为下一次大流行做好准备?

Viral Dynamic Models During COVID-19: Are We Ready for the Next Pandemic?

作者信息

Marc Aurelien, Schiffer Joshua T, Mentré France, Perelson Alan S, Guedj Jérémie

机构信息

T-6, Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, USA.

Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.

出版信息

CPT Pharmacometrics Syst Pharmacol. 2025 Aug;14(8):1289-1297. doi: 10.1002/psp4.70055. Epub 2025 Jun 2.


DOI:10.1002/psp4.70055
PMID:40457567
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12358307/
Abstract

Mathematical models have been used for about 30 years to improve our understanding of virus-host interaction, in particular during chronic infections. During the COVID-19 pandemic, these models have been used to provide insights into the natural history of acute SARS-CoV-2 infection, optimize antiviral treatment strategies, understand factors associated with transmission, and optimize surveillance systems. The impact of modeling has been accelerated by the availability of unprecedented multidimensional immune data from animal and human systems, which enhanced partnerships between experimentalists and theorists and led to exciting new modeling and statistical developments. In this mini review, we examine the lessons learned from the COVID-19 pandemic and discuss the main insights provided by mathematical models of viral dynamics at the different stages of the outbreak. Although we focus on respiratory infection, we also consider the new areas for development in anticipation of future acute infections from new or reemerging pathogens.

摘要

数学模型已被使用约30年,以增进我们对病毒与宿主相互作用的理解,尤其是在慢性感染期间。在新冠疫情期间,这些模型被用于深入了解急性SARS-CoV-2感染的自然史、优化抗病毒治疗策略、理解与传播相关的因素以及优化监测系统。动物和人类系统中前所未有的多维免疫数据的可用性加速了建模的影响,这加强了实验人员和理论家之间的合作,并带来了令人兴奋的新建模和统计进展。在这篇小型综述中,我们审视了从新冠疫情中学到的经验教训,并讨论了疫情不同阶段病毒动力学数学模型提供的主要见解。尽管我们专注于呼吸道感染,但我们也考虑了预期未来由新出现或重新出现的病原体引发的急性感染的新发展领域。

相似文献

[1]
Viral Dynamic Models During COVID-19: Are We Ready for the Next Pandemic?

CPT Pharmacometrics Syst Pharmacol. 2025-8

[2]
Prescription of Controlled Substances: Benefits and Risks

2025-1

[3]
Physical interventions to interrupt or reduce the spread of respiratory viruses.

Cochrane Database Syst Rev. 2023-1-30

[4]
Significance of supervision sampling in control of communicable respiratory disease simulated by a new model during different stages of the disease.

Sci Rep. 2025-1-30

[5]
Measures implemented in the school setting to contain the COVID-19 pandemic.

Cochrane Database Syst Rev. 2022-1-17

[6]
Rapid, point-of-care antigen tests for diagnosis of SARS-CoV-2 infection.

Cochrane Database Syst Rev. 2022-7-22

[7]
Antibody tests for identification of current and past infection with SARS-CoV-2.

Cochrane Database Syst Rev. 2022-11-17

[8]
Short-Term Memory Impairment

2025-1

[9]
The effect of sample site and collection procedure on identification of SARS-CoV-2 infection.

Cochrane Database Syst Rev. 2024-12-16

[10]
Service Interruption in HIV Care Amid COVID-19 Pandemic in Myanmar: Results From Analysis of Routine Program Data 2018-2022.

J Int Assoc Provid AIDS Care. 2024

本文引用的文献

[1]
Modeling suggests SARS-CoV-2 rebound after nirmatrelvir-ritonavir treatment is driven by target cell preservation coupled with incomplete viral clearance.

J Virol. 2025-3-18

[2]
The kinetics of SARS-CoV-2 infection based on a human challenge study.

Proc Natl Acad Sci U S A. 2024-11-12

[3]
Antiviral effect of Evusheld in COVID-19 hospitalized patients infected with pre-Omicron or Omicron variants: a modelling analysis of the randomized DisCoVeRy trial.

J Antimicrob Chemother. 2024-11-4

[4]
A unifying model to explain frequent SARS-CoV-2 rebound after nirmatrelvir treatment and limited prophylactic efficacy.

Nat Commun. 2024-6-28

[5]
Temporal changes in SARS-CoV-2 clearance kinetics and the optimal design of antiviral pharmacodynamic studies: an individual patient data meta-analysis of a randomised, controlled, adaptive platform study (PLATCOV).

Lancet Infect Dis. 2024-9

[6]
Modeling the emergence of viral resistance for SARS-CoV-2 during treatment with an anti-spike monoclonal antibody.

PLoS Pathog. 2024-4

[7]
How robust are estimates of key parameters in standard viral dynamic models?

PLoS Comput Biol. 2024-4

[8]
Modeling how antibody responses may determine the efficacy of COVID-19 vaccines.

Nat Comput Sci. 2022-2

[9]
Correction to Lancet Infect Dis 2023; published online Sept 28. https://doi.org/10.1016/S1473-3099(23)00493-0.

Lancet Infect Dis. 2023-12

[10]
Neutralizing Antibody Levels as a Correlate of Protection Against SARS-CoV-2 Infection: A Modeling Analysis.

Clin Pharmacol Ther. 2024-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索