Padmanabhan Pranesh, Desikan Rajat, Dixit Narendra M
Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia.
Department of Chemical Engineering, Indian Institute of Science, Bangalore, India.
Nat Comput Sci. 2022 Feb;2(2):123-131. doi: 10.1038/s43588-022-00198-0. Epub 2022 Feb 28.
Predicting the efficacy of COVID-19 vaccines would aid vaccine development and usage strategies, which is of importance given their limited supplies. Here we develop a multiscale mathematical model that proposes mechanistic links between COVID-19 vaccine efficacies and the neutralizing antibody (NAb) responses they elicit. We hypothesized that the collection of all NAbs would constitute a shape space and that responses of individuals are random samples from this space. We constructed the shape space by analyzing reported in vitro dose-response curves of ~80 NAbs. Sampling NAb subsets from the space, we recapitulated the responses of convalescent patients. We assumed that vaccination would elicit similar NAb responses. We developed a model of within-host SARS-CoV-2 dynamics, applied it to virtual patient populations and, invoking the NAb responses above, predicted vaccine efficacies. Our predictions quantitatively captured the efficacies from clinical trials. Our study thus suggests plausible mechanistic underpinnings of COVID-19 vaccines and generates testable hypotheses for establishing them.
预测新冠疫苗的疗效将有助于疫苗的研发和使用策略,鉴于其供应有限,这一点至关重要。在此,我们开发了一个多尺度数学模型,该模型提出了新冠疫苗疗效与其引发的中和抗体(NAb)反应之间的机制联系。我们假设所有中和抗体的集合将构成一个形状空间,并且个体的反应是来自该空间的随机样本。我们通过分析约80种中和抗体的体外剂量反应曲线报告来构建形状空间。从该空间中采样中和抗体子集,我们重现了康复患者的反应。我们假设接种疫苗会引发类似的中和抗体反应。我们开发了一个宿主内SARS-CoV-2动力学模型,将其应用于虚拟患者群体,并结合上述中和抗体反应,预测疫苗疗效。我们的预测定量地捕捉了临床试验中的疗效。因此,我们的研究提出了新冠疫苗可能的机制基础,并产生了可用于验证这些基础的可测试假设。