Suppr超能文献

玉米叶片黄化基因ZmCAAX通过与脱落酸生物合成酶ZmNCED3相互作用调节脱落酸含量,从而调控生长和抗旱性。

Maize leaf yellowing gene ZmCAAX modulates growth and drought resistance by regulating abscisic acid contents through interaction with the ABA biosynthetic enzyme ZmNCED3.

作者信息

Li Xiaohu, Zhang Bin, Du Jiyuan, Chen Shuai, Wang Yujiao, Li Qigui, Zhuge Shilin, Li Xinzheng, Nie Yongxin, Li Gaoke, Xu Fang, Yang Aiguo, Zhang Zhiming, Ding Haiping

机构信息

National Key Laboratory of Wheat Breeding, College of Life Sciences, Shandong Agricultural University, Taian, China.

Maize Research Institute, Sichuan Agricultural University, Chengdu, China.

出版信息

Plant Biotechnol J. 2025 Aug;23(8):3431-3450. doi: 10.1111/pbi.70147. Epub 2025 Jun 3.

Abstract

In maize (Zea mays L.), leaves are essential for photosynthesis and transpiration and leaf yellowing is regulated by carotenoid metabolism, hormonal signalling and environmental factors. However, the molecular mechanisms linking drought stress and leaf yellowing remain poorly understood. ZmNCED3, a key regulator of carotenoid degradation and drought stress responses, plays a critical role in ABA biosynthesis, but its upstream regulatory mechanisms remain unclear. This study investigates the association between leaf-yellowing mutations and drought stress response in maize. Through map-based cloning and allelism tests, we identified ZmCAAX as the causal gene underlying the yp1 mutant phenotype. ZmCAAX encodes a CAAX amino-terminal protease family protein. Overexpression of ZmCAAX increases drought sensitivity, whereas knockout mutants exhibit enhanced drought resistance. ZmCAAX physically interacts with ZmNCED3 and promotes its degradation. Under drought stress, the expression of ZmCAAX decreases, resulting in increased ZmNCED3 levels, which in turn promotes carotenoid degradation and ABA biosynthesis. Based on these findings, designing ZmCAAX gene knockouts or selecting natural variant alleles of ZmCAAX could significantly enhance drought stress resistance and carotenoid content. This genetic strategy may be applied to maize breeding to improve maize quality and drought stress resistance.

摘要

在玉米(Zea mays L.)中,叶片对于光合作用和蒸腾作用至关重要,叶片黄化受类胡萝卜素代谢、激素信号传导和环境因素调控。然而,干旱胁迫与叶片黄化之间的分子机制仍知之甚少。ZmNCED3是类胡萝卜素降解和干旱胁迫响应的关键调节因子,在脱落酸(ABA)生物合成中起关键作用,但其上游调控机制尚不清楚。本研究调查了玉米叶片黄化突变与干旱胁迫响应之间的关联。通过图位克隆和等位性测试,我们确定ZmCAAX是yp1突变体表型的致病基因。ZmCAAX编码一种CAAX氨基末端蛋白酶家族蛋白。ZmCAAX的过表达增加了干旱敏感性,而敲除突变体表现出增强的抗旱性。ZmCAAX与ZmNCED3发生物理相互作用并促进其降解。在干旱胁迫下,ZmCAAX的表达降低,导致ZmNCED3水平升高,进而促进类胡萝卜素降解和ABA生物合成。基于这些发现,设计ZmCAAX基因敲除或选择ZmCAAX的天然变异等位基因可显著增强干旱胁迫抗性和类胡萝卜素含量。这种遗传策略可应用于玉米育种,以提高玉米品质和干旱胁迫抗性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验