Greiner-Perth Ann-Kathrin, Wilke Hans-Joachim, Liebsch Christian
Institute of Orthopaedic Research and Biomechanics, Trauma Research Centre Ulm, Ulm University, Ulm, Germany.
Front Bioeng Biotechnol. 2025 May 19;13:1576720. doi: 10.3389/fbioe.2025.1576720. eCollection 2025.
Unstable traumatic spinal injuries require surgical stabilization. However, biomechanical instability of specific spinal injuries has been little investigated, although restoring stability represents a primary goal of surgical treatment. This study aimed (1) to develop an protocol to generate standardized spinal compression injuries, (2) to establish a three-dimensional flexibility analysis to identify relevant biomechanical instability parameters, and (3) to examine effects of person-specific factors on vertebral fragility.
Mechanical fracture simulation was performed on twelve fresh-frozen human spine specimens (T9-11; 4 f/8 m; 40-60 years) using a material testing machine. Pure compression trauma (n = 6) was simulated by applying displacement-controlled axial compression at 300 mm/s until 20% compression of the T10 vertebral body height. Flexion-compression trauma (n = 6) was achieved by additional flexural loading of 10 Nm. Pre- and post-traumatic pure moment testing with 5 Nm was performed in flexion/extension, lateral bending, and axial rotation using optical motion tracking to determine range of motion (ROM), neutral zone (NZ), coupled rotations, and coupled translations. Translations under shear loading of 100 N and axial deformation under 400 N compression were analyzed.
All specimens exhibited AOSpine A1 injuries occurring at a median fracture load of 5.0 kN (2.4-9.2 kN). Pure compression generated isolated medial endplate fractures (n = 5), while flexion-compression primarily provoked combined endplate and ventral compression injuries (n = 3). Significant (p < 0.05) increases were detected for all parameters except for coupled rotations and posterior (compression) and left shear translation (flexion-compression). Highest instability increases were determined for axial deformability (compression: +136% / flexion-compression: +200%) and NZ (flexion/extension: +177% / 188%; lateral bending: +174% / +126%). Mild to moderate disc degeneration and age did not correlate with fracture loads (p > 0.05). In compression trauma, cortical bone mineral density (BMD) of T10 had no effect on fracture loads (p > 0.05), whereas in flexion-compression trauma, a significant (p < 0.05) linear correlation was found (Spearman's r = 0.83).
Relevant instability parameters of minor compression and flexion-compression injuries include axial deformability, NZ, ROM, and coupled translations. Cortical BMD of the target vertebra solely affects fracture generation in flexion-compression trauma. Consequently, risk factors for fracture development may vary between trauma mechanisms.
不稳定的创伤性脊柱损伤需要手术稳定治疗。然而,尽管恢复稳定性是手术治疗的主要目标,但特定脊柱损伤的生物力学不稳定性却鲜有研究。本研究旨在:(1)制定一种生成标准化脊柱压缩损伤的方案;(2)建立三维柔韧性分析以确定相关的生物力学不稳定参数;(3)研究个体因素对椎体脆性的影响。
使用材料试验机对12个新鲜冷冻的人体脊柱标本(T9 - 11;4名女性/8名男性;40 - 60岁)进行机械骨折模拟。通过以300 mm/s的速度施加位移控制的轴向压缩直至T10椎体高度压缩20%来模拟单纯压缩创伤(n = 6)。通过额外施加10 Nm的弯曲载荷实现屈曲 - 压缩创伤(n = 6)。使用光学运动跟踪在屈曲/伸展、侧弯和轴向旋转中进行5 Nm的创伤前和创伤后纯力矩测试,以确定运动范围(ROM)、中性区(NZ)、耦合旋转和耦合平移。分析100 N剪切载荷下的平移和400 N压缩下的轴向变形。
所有标本均表现出AOSpine A1损伤,中位骨折载荷为5.0 kN(2.4 - 9.2 kN)。单纯压缩产生孤立的内侧终板骨折(n = 5),而屈曲 - 压缩主要引发终板和腹侧压缩联合损伤(n = 3)。除耦合旋转以及后(压缩)和左剪切平移(屈曲 - 压缩)外,所有参数均检测到显著(p < 0.05)增加。轴向变形能力(压缩:+136% / 屈曲 - 压缩:+200%)和中性区(屈曲/伸展:+177% / 188%;侧弯:+174% / +126%)的不稳定性增加最高。轻度至中度椎间盘退变和年龄与骨折载荷无关(p > 0.05)。在压缩创伤中,T10的皮质骨矿物质密度(BMD)对骨折载荷无影响(p > 0.05),而在屈曲 - 压缩创伤中,发现显著(p < 0.05)的线性相关性(Spearman's r = 0.83)。
轻微压缩和屈曲 - 压缩损伤的相关不稳定参数包括轴向变形能力、中性区、运动范围和耦合平移。目标椎体的皮质骨密度仅影响屈曲 - 压缩创伤中的骨折发生。因此,骨折发生的危险因素可能因创伤机制而异。