Diss Antoine, Lerebours Augustin, Grébonval Cyrille, Birault Laurine
Dentistry, Institut du Sous-Périosté, Nice, FRA.
Dentistry, Biotech Dental, Nice, FRA.
Cureus. 2025 Jun 1;17(6):e85175. doi: 10.7759/cureus.85175. eCollection 2025 Jun.
Severely atrophic maxillae (Cawood and Howell Class V-VI) often prevent conventional implant placement in the absence of extensive bone grafting, which carries risks, especially in elderly patients. Modern subperiosteal implants, digitally designed and manufactured in titanium using additive technologies, offer a graftless solution by anchoring the implant to basal bone structures such as the canine pillars and the zygomatic buttress. This case report explores the clinical feasibility of adding pterygoid anchorage to increase subperiosteal implant stability. A 71-year-old edentulous female with extreme maxillary atrophy received two custom subperiosteal implants designed with fixation points in the canine, zygomatic, and pterygoid regions. The digital workflow included cone beam computed tomography (CBCT) imaging, digital smile design, and implant modeling with a triply periodic minimal surface (TPMS)-gyroid structure to promote osseointegration. The implants were manufactured using Direct Metal Laser Sintering in Ti-6Al-4V ELI titanium and loaded immediately with a provisional titanium-reinforced polymethyl methacrylate (PMMA) bridge. Surgical placement included the insertion of bicortical pterygoid screws that penetrated the pterygomaxillary suture, so increasing posterior support and countering the occlusal forces associated with anterior cantilevers. Postoperative results showed excellent implant stability and patient satisfaction. This report confirms that pterygoid anchorage is a viable addition to subperiosteal implant design. It offers improved mechanical stability and expands treatment options for patients with extreme bone loss, without requiring bone grafting. Further biomechanical and long-term studies are recommended to validate these promising findings.
严重萎缩的上颌骨(Cawood和Howell V - VI级)在没有进行广泛骨移植的情况下通常会妨碍传统种植体的植入,而骨移植存在风险,尤其是在老年患者中。现代骨膜下种植体采用增材技术以钛进行数字化设计和制造,通过将种植体锚固于诸如尖牙支柱和颧突等基骨结构,提供了一种无需植骨的解决方案。本病例报告探讨了增加翼突锚固以提高骨膜下种植体稳定性的临床可行性。一名71岁的无牙女性,上颌极度萎缩,接受了两枚定制的骨膜下种植体,其设计在尖牙、颧骨和翼突区域设有固定点。数字化流程包括锥形束计算机断层扫描(CBCT)成像、数字化微笑设计以及采用三重周期极小曲面(TPMS)-类甲状腺结构进行种植体建模以促进骨结合。种植体采用直接金属激光烧结技术在Ti-6Al-4V ELI钛中制造,并立即用临时钛增强聚甲基丙烯酸甲酯(PMMA)桥体加载。手术植入包括插入穿透翼上颌缝的双侧皮质翼突螺钉,从而增加后部支撑并抵消与前部悬臂相关的咬合力。术后结果显示种植体稳定性极佳,患者满意度高。本报告证实翼突锚固是骨膜下种植体设计中一种可行的补充。它提供了更好的机械稳定性,并为骨量严重流失的患者扩展了治疗选择,而无需进行骨移植。建议进行进一步的生物力学和长期研究以验证这些有前景的发现。