Suppr超能文献

为急性健康影响研究改进火灾排放清单:整合高空间和时间分辨率数据。

Enhancing Fire Emissions Inventories for Acute Health Effects Studies: Integrating High Spatial and Temporal Resolution Data.

作者信息

Faulstich Sam D, Strickland Matthew J, Holmes Heather A

机构信息

University of Utah; Department of Chemical Engineering; Salt Lake City, UT.

University of Nevada, Reno; School of Public Health; Reno, NV.

出版信息

Int J Wildland Fire. 2025 Feb;34(2). doi: 10.1071/wf24040. Epub 2025 Feb 20.

Abstract

BACKGROUND

Daily fire progression information is crucial for public health studies that examine the relationship between population-level smoke exposures and subsequent health events. Issues with remote sensing used in fire emissions inventories (FEI) lead to the possibility of missed exposures that impact the results of acute health effects studies.

AIMS

This paper provides a method for improving an FEI dataset with readily available information to create a more robust dataset with daily fire progression.

METHODS

High temporal and spatial resolution burned area information from two FEI products are combined into a single dataset, and a linear regression model fills gaps in daily fire progression.

KEY RESULTS

The combined dataset provides up to 71% more PM emissions, 69% more burned area, and 367% more fire days per year than using a single source of burned area information.

CONCLUSIONS

The FEI combination method results in improved FEI information with no gaps in daily fire emissions estimates.

IMPLICATIONS

The combined dataset provides a functional improvement to FEI data that can be achieved with currently available data.

摘要

背景

每日火灾蔓延信息对于研究人群层面烟雾暴露与后续健康事件之间关系的公共卫生研究至关重要。火灾排放清单(FEI)中使用的遥感技术存在问题,可能导致遗漏暴露情况,从而影响急性健康影响研究的结果。

目的

本文提供一种利用现有信息改进FEI数据集的方法,以创建一个更强大的包含每日火灾蔓延情况的数据集。

方法

将来自两种FEI产品的高时空分辨率燃烧面积信息合并到一个数据集中,并使用线性回归模型填补每日火灾蔓延的空白。

关键结果

与使用单一燃烧面积信息来源相比,合并后的数据集每年提供的颗粒物排放量多71%、燃烧面积多69%、火灾天数多367%。

结论

FEI合并方法可改善FEI信息,且每日火灾排放估计无空白。

启示

合并后的数据集对FEI数据进行了功能改进,利用现有数据即可实现。

相似文献

5
Ensemble-based deep learning for estimating PM over California with multisource big data including wildfire smoke.
Environ Int. 2020 Dec;145:106143. doi: 10.1016/j.envint.2020.106143. Epub 2020 Sep 24.
10
Associations of wildfire smoke PM exposure with cardiorespiratory events in Colorado 2011-2014.
Environ Int. 2019 Dec;133(Pt A):105151. doi: 10.1016/j.envint.2019.105151. Epub 2019 Sep 11.

引用本文的文献

1
Influence of fire characteristics on the associations between smoke PM exposure and acute cardiorespiratory health events.
Environ Int. 2025 Jul;201:109577. doi: 10.1016/j.envint.2025.109577. Epub 2025 Jun 3.

本文引用的文献

2
Quantifying the premature mortality and economic loss from wildfire-induced PM in the contiguous U.S.
Sci Total Environ. 2023 Jun 1;875:162614. doi: 10.1016/j.scitotenv.2023.162614. Epub 2023 Mar 4.
3
Long-term impacts of non-occupational wildfire exposure on human health: A systematic review.
Environ Pollut. 2023 Mar 1;320:121041. doi: 10.1016/j.envpol.2023.121041. Epub 2023 Jan 10.
4
Short-term exposure to wildfire-related PM increases mortality risks and burdens in Brazil.
Nat Commun. 2022 Dec 10;13(1):7651. doi: 10.1038/s41467-022-35326-x.
8
Association between fire smoke fine particulate matter and asthma-related outcomes: Systematic review and meta-analysis.
Environ Res. 2019 Dec;179(Pt A):108777. doi: 10.1016/j.envres.2019.108777. Epub 2019 Sep 26.
9
Ambient Particulate Air Pollution and Daily Mortality in 652 Cities.
N Engl J Med. 2019 Aug 22;381(8):705-715. doi: 10.1056/NEJMoa1817364.
10
The collection 6 MODIS active fire detection algorithm and fire products.
Remote Sens Environ. 2016 Jun 1;178:31-41. doi: 10.1016/j.rse.2016.02.054. Epub 2016 Mar 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验