Koplitz Shannon N, Nolte Christopher G, Pouliot George A, Vukovich Jeffrey M, Beidler James
US EPA Office of Research and Development, Research Triangle Park, North Carolina, USA.
US EPA Office of Air Quality Planning and Standards, Research Triangle Park, North Carolina, USA.
Atmos Environ (1994). 2018;191:328-339. doi: 10.1016/j.atmosenv.2018.08.020.
Wildland fires are a major source of fine particulate matter (PM), one of the most harmful ambient pollutants for human health globally. To represent the influence of wildland fire emissions on atmospheric composition, regional and global chemical transport models rely on emission inventories developed from estimates of burned area (i.e. fire size and location). While different methods of estimating annual burned area agree reasonably well in the western U.S. (within 20-30% for most years during 2002-2014), estimates for the southern U.S. can vary by more than a factor of 5. These differences in burned area lead to significant variability in the spatial and temporal allocation of emissions across fire emission inventory platforms. In this work, we implement wildland fire emission estimates for 2011 from three different products - the USEPA National Emission Inventory (NEI), the Fire Inventory of NCAR (FINN), and the Global Fire Emission Database (GFED4s) - into the Community Multiscale Air Quality (CMAQ) model to quantify and characterize differences in simulated PM and ozone concentrations across the contiguous U.S. (CONUS) due to the fire emission inventory used. The NEI is developed specifically for the U.S., while both FINN and GFED4s are available globally. We find that NEI emissions lead to the largest increases in modeled annual average PM (0.85 μg m) and April-September maximum daily 8-h ozone (0.28 ppb) nationally compared to a "no fire" baseline, followed by FINN (0.33 μg m and 0.22 ppb) and GFED4s (0.12 μg m and 0.17 ppb). Annual mean enhancements in wildland fire pollution are highest in the southern U.S. across all three inventories (over 4 μg m and 2 ppb in some areas), but show considerable spatial variability within these regions. We also examine the representation of five individual fire events during 2011 and find that of the two global inventories, FINN reproduces more of the acute changes in pollutant concentrations modeled with NEI and shown in surface observations during each of the episodes investigated compared to GFED4s. Understanding the sensitivity of modeling fire-related PM and ozone in the U.S. to burned area estimation approaches will inform future efforts to assess the implications of present and future fire activity for air quality and human health at national and global scales.
野火是细颗粒物(PM)的主要来源之一,细颗粒物是全球对人类健康危害最大的环境污染物之一。为了体现野火排放对大气成分的影响,区域和全球化学传输模型依赖于根据燃烧面积(即火灾规模和位置)估算得出的排放清单。虽然估算美国西部年度燃烧面积的不同方法在结果上相当吻合(2002 - 2014年的大多数年份误差在20% - 30%以内),但美国南部的估算结果差异可能超过5倍。燃烧面积的这些差异导致火灾排放清单平台间排放的时空分配存在显著差异。在这项工作中,我们将2011年来自三种不同产品——美国环境保护局国家排放清单(NEI)、美国国家大气研究中心火灾清单(FINN)和全球火灾排放数据库(GFED4s)——的野火排放估算结果应用于社区多尺度空气质量(CMAQ)模型,以量化和描述因使用的火灾排放清单不同而导致的美国本土(CONUS)模拟PM和臭氧浓度的差异。NEI是专门为美国开发的,而FINN和GFED4s在全球范围内均可获取。我们发现,与“无火灾”基线相比,NEI排放导致全国范围内模拟的年平均PM增加最多(0.85 μg/m³),4月至9月的每日最大8小时臭氧增加(0.28 ppb),其次是FINN(0.33 μg/m³和0.22 ppb)和GFED4s(0.12 μg/m³和0.17 ppb)。在所有三种清单中,美国南部的野火污染年平均增强幅度最高(某些地区超过4 μg/m³和2 ppb),但在这些区域内显示出相当大的空间变异性。我们还研究了2011年五个单独火灾事件的表现,发现与GFED4s相比,在两种全球清单中,FINN在每个调查事件中更能再现NEI模拟的且在地面观测中显示的污染物浓度的急剧变化。了解美国模拟与火灾相关的PM和臭氧对燃烧面积估算方法的敏感性,将为未来在国家和全球尺度上评估当前和未来火灾活动对空气质量和人类健康影响的工作提供参考。