Suppr超能文献

评估基于测验题组的多值项目的正则化差异项目功能方法的性能。

Evaluating the Performance of a Regularized Differential Item Functioning Method for Testlet-Based Polytomous Items.

作者信息

Huang Jing, Miller M David, Huggins-Manley Anne Corinne, Leite Walter L, Knopf Herman T, Ritzhaupt Albert D

机构信息

University of Florida, Gainesville, FL, USA.

出版信息

Educ Psychol Meas. 2025 May 31:00131644251342512. doi: 10.1177/00131644251342512.

Abstract

This study investigated the effect of testlets on regularization-based differential item functioning (DIF) detection in polytomous items, focusing on the generalized partial credit model with lasso penalization (GPCMlasso) DIF method. Five factors were manipulated: sample size, magnitude of testlet effect, magnitude of DIF, number of DIF items, and type of DIF-inducing covariates. Model performance was evaluated using false-positive rate (FPR) and true-positive rate (TPR). Results showed that the simulation had effective control of FPR across conditions, while the TPR was differentially influenced by the manipulated factors. Generally, the small testlet effect did not noticeably affect the GPCMlasso model's performance regarding FPR and TPR. The findings provide evidence of the effectiveness of the GPCMlasso method for DIF detection in polytomous items when testlets were present. The implications for future research and limitations were also discussed.

摘要

本研究调查了测试组对多分类项目中基于正则化的差异项目功能(DIF)检测的影响,重点关注具有套索惩罚的广义部分计分模型(GPCMlasso)DIF方法。操纵了五个因素:样本量、测试组效应的大小、DIF的大小、DIF项目的数量以及诱发DIF的协变量类型。使用假阳性率(FPR)和真阳性率(TPR)评估模型性能。结果表明,模拟在各种条件下有效控制了FPR,而TPR受到操纵因素的不同影响。一般来说,较小的测试组效应在FPR和TPR方面对GPCMlasso模型的性能没有明显影响。研究结果为GPCMlasso方法在存在测试组时对多分类项目进行DIF检测的有效性提供了证据。还讨论了对未来研究的启示和局限性。

相似文献

4
Computerized adaptive testing for testlet-based innovative items.基于测试单元的创新项目的计算机化自适应测试。
Br J Math Stat Psychol. 2022 Feb;75(1):136-157. doi: 10.1111/bmsp.12252. Epub 2021 Aug 30.
8
Real and Artificial Differential Item Functioning in Polytomous Items.多分类项目中的真实和人为差异项目功能
Educ Psychol Meas. 2015 Apr;75(2):185-207. doi: 10.1177/0013164414534258. Epub 2014 May 16.

本文引用的文献

1
DIF Analysis with Unknown Groups and Anchor Items.不同组别和锚定项目的 DIF 分析。
Psychometrika. 2024 Mar;89(1):267-295. doi: 10.1007/s11336-024-09948-7. Epub 2024 Feb 21.
2
Implementing a Standardized Effect Size in the POLYSIBTEST Procedure.在POLYSIBTEST程序中实施标准化效应量
Educ Psychol Meas. 2023 Apr;83(2):401-427. doi: 10.1177/00131644221081011. Epub 2022 Feb 28.
4
Semi-automated Rasch analysis with differential item functioning.半自动化 Rasch 分析与差异项目功能。
Behav Res Methods. 2023 Sep;55(6):3129-3148. doi: 10.3758/s13428-022-01947-9. Epub 2022 Sep 7.
7
Using Lasso and Adaptive Lasso to Identify DIF in Multidimensional 2PL Models.使用套索和自适应套索识别多维 2PL 模型中的 DIF。
Multivariate Behav Res. 2023 Mar-Apr;58(2):387-407. doi: 10.1080/00273171.2021.1985950. Epub 2022 Jan 28.
10
An R toolbox for score-based measurement invariance tests in IRT models.IRT 模型中基于评分的测量不变性检验的 R 工具箱。
Behav Res Methods. 2022 Oct;54(5):2101-2113. doi: 10.3758/s13428-021-01689-0. Epub 2021 Dec 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验