Suppr超能文献

解释中的可辨别性:为医学设计更可接受且有意义的机器学习模型。

Discernibility in explanations: Designing more acceptable and meaningful machine learning models for medicine.

作者信息

Wang Haomiao, Aligon Julien, May Julien, Doumard Emmanuel, Labroche Nicolas, Delpierre Cyrille, Soulé-Dupuy Chantal, Casteilla Louis, Planat-Benard Valérie, Monsarrat Paul

机构信息

RESTORE Research Center, Université de Toulouse, INSERM 1301, CNRS 5070, ENVT, Toulouse, France.

Institut de Recherche en Informatique de Toulouse (IRIT), Université de Toulouse, CNRS/UMR 5505, Toulouse, France.

出版信息

Comput Struct Biotechnol J. 2025 Apr 23;27:1800-1808. doi: 10.1016/j.csbj.2025.04.021. eCollection 2025.

Abstract

Although the benefits of machine learning are undeniable in healthcare, explainability plays a vital role in improving transparency and understanding the most decisive and persuasive variables for prediction. The challenge is to identify explanations that make sense to the biomedical expert. This work proposes as a new approach to faithfully reflect human cognition, based on the user's perception of a relationship between explanations and data for a given variable. A total of 50 participants (19 biomedical experts and 31 data scientists) evaluated their perception of the discernibility of explanations from both synthetic and human-based datasets (National Health and Nutrition Examination Survey). The low inter-rater reliability of discernibility (Intraclass Correlation Coefficient < 0.5), with no significant difference between areas of expertise or levels of education, highlights the need for an objective metric of discernibility. Thirteen statistical coefficients were evaluated for their ability to capture, for a given variable, the relationship between its values and its explanations using Passing-Bablok regression. Among these, dcor was shown to be a reliable metric for assessing the discernibility of explanations, effectively capturing the clarity of the relationship between the data and their explanations, and providing clues to underlying pathophysiological mechanisms not immediately apparent when examining individual predictors. Discernibility can also serve as an evaluation metric for model quality, helping to prevent overfitting and aiding in feature selection, ultimately providing medical practitioners with more accurate and persuasive results.

摘要

尽管机器学习在医疗保健领域的益处不可否认,但可解释性在提高透明度以及理解预测中最具决定性和说服力的变量方面起着至关重要的作用。挑战在于确定对生物医学专家有意义的解释。这项工作提出了一种新方法,即基于用户对给定变量的解释与数据之间关系的感知,忠实地反映人类认知。共有50名参与者(19名生物医学专家和31名数据科学家)评估了他们对从合成数据集和基于人类的数据集(国家健康与营养检查调查)中解释的可辨别性的感知。可辨别性的评分者间信度较低(组内相关系数<0.5),专业领域或教育水平之间无显著差异,这凸显了对可辨别性客观指标的需求。使用Passing-Bablok回归评估了13个统计系数捕捉给定变量的值与其解释之间关系的能力。其中,dcor被证明是评估解释可辨别性的可靠指标,能有效捕捉数据与其解释之间关系的清晰度,并为检查单个预测因子时不立即明显的潜在病理生理机制提供线索。可辨别性还可作为模型质量的评估指标,有助于防止过拟合并辅助特征选择,最终为医生提供更准确、更有说服力的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9834/12127544/61762384c8e2/gr001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验