Bienefeld Nadine, Boss Jens Michael, Lüthy Rahel, Brodbeck Dominique, Azzati Jan, Blaser Mirco, Willms Jan, Keller Emanuela
Department of Management, Technology, and Economics, ETH Zurich, Zürich, Switzerland.
Neurocritical Care Unit, Department of Neurosurgery and Institute of Intensive Care Medicine, Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Zürich, Switzerland.
NPJ Digit Med. 2023 May 22;6(1):94. doi: 10.1038/s41746-023-00837-4.
Explainable artificial intelligence (XAI) has emerged as a promising solution for addressing the implementation challenges of AI/ML in healthcare. However, little is known about how developers and clinicians interpret XAI and what conflicting goals and requirements they may have. This paper presents the findings of a longitudinal multi-method study involving 112 developers and clinicians co-designing an XAI solution for a clinical decision support system. Our study identifies three key differences between developer and clinician mental models of XAI, including opposing goals (model interpretability vs. clinical plausibility), different sources of truth (data vs. patient), and the role of exploring new vs. exploiting old knowledge. Based on our findings, we propose design solutions that can help address the XAI conundrum in healthcare, including the use of causal inference models, personalized explanations, and ambidexterity between exploration and exploitation mindsets. Our study highlights the importance of considering the perspectives of both developers and clinicians in the design of XAI systems and provides practical recommendations for improving the effectiveness and usability of XAI in healthcare.
可解释人工智能(XAI)已成为应对人工智能/机器学习在医疗保健领域实施挑战的一种很有前景的解决方案。然而,对于开发者和临床医生如何解读XAI以及他们可能存在哪些相互冲突的目标和要求,我们却知之甚少。本文介绍了一项纵向多方法研究的结果,该研究涉及112名开发者和临床医生,他们共同为一个临床决策支持系统共同设计一个XAI解决方案。我们的研究确定了开发者和临床医生对XAI的心智模型之间的三个关键差异,包括相反的目标(模型可解释性与临床合理性)、不同的真理来源(数据与患者)以及探索新知识与利用旧知识的作用。基于我们的研究结果,我们提出了一些设计解决方案,这些方案有助于解决医疗保健领域的XAI难题,包括使用因果推理模型、个性化解释以及在探索和利用思维模式之间保持灵活性。我们的研究强调了在XAI系统设计中考虑开发者和临床医生双方观点的重要性,并为提高XAI在医疗保健领域的有效性和可用性提供了实用建议。
NPJ Digit Med. 2023-5-22
Stud Health Technol Inform. 2024-8-22
Ann Clin Transl Neurol. 2024-5
Stud Health Technol Inform. 2024-8-22
Diagnostics (Basel). 2022-1-19
Comput Struct Biotechnol J. 2024-8-12
IEEE Rev Biomed Eng. 2023
Diagnostics (Basel). 2025-7-22
Front Med (Lausanne). 2025-7-29
J Med Internet Res. 2025-7-11
Comput Struct Biotechnol J. 2025-4-23
Mol Psychiatry. 2025-6-3
PLOS Digit Health. 2022-2-17
NPJ Digit Med. 2022-9-30
NPJ Digit Med. 2022-8-8
Digit Health. 2022-2-11
Nat Med. 2022-1
Lancet Digit Health. 2021-11
IEEE Trans Vis Comput Graph. 2022-1