文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

MDPNet:一种用于多模态MRI胶质瘤基因分型的双路径并行融合网络。

MDPNet: a dual-path parallel fusion network for multi-modal MRI glioma genotyping.

作者信息

Wang Huaizhi, Liu Haichao, Du Fang, Wang Di, Huo Xianhao, Tian Jihui, Song Lijuan

机构信息

School of Information Engineering, Ningxia University, Yinchuan, Ningxia, China.

Ningxia Key Laboratory of Artificial Intelligence and Information Security for Channeling Computing Resources from the East to the West, School of Information Engineering, Ningxia University, Yinchuan, Ningxia, China.

出版信息

Front Oncol. 2025 May 19;15:1574861. doi: 10.3389/fonc.2025.1574861. eCollection 2025.


DOI:10.3389/fonc.2025.1574861
PMID:40458732
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12127811/
Abstract

BACKGROUND: Glioma stands as one of the most lethal brain tumors in humans, and its accurate diagnosis is critical for patient treatment and prognosis. Magnetic Resonance Imaging (MRI) has been widely utilized for glioma diagnosis and research due to its non-invasive nature and clinical accessibility. According to the 2021 World Health Organization Central Nervous System Tumor Classification guidelines, glioma subtypes can be determined through molecular status information of Isocitrate Dehydrogenase (IDH), Chromosome 1p/19q codeletion (1p/19q), and Alpha Thalassemia/Mental Retardation Syndrome X-linked (ATRX) genes. METHOD: In this study, we propose a dual-path parallel fusion network (MDPNet) designed to comprehensively extract heterogeneous features across different MRI modalities while simultaneously predicting the molecular status of IDH, 1p/19q, and ATRX. To mitigate the impact of data imbalance, we developed a cross-gene feature-sharing classifier and implemented an adaptive weighted loss function, substantially enhancing the model's predictive performance. RESULTS: In this study, each gene classification task was formulated as a binary classification problem. Experiments conducted on public datasets demonstrate that our method outperforms existing approaches in accuracy, Area Under the Curve (AUC), sensitivity, and specificity. The achieved classification accuracies for IDH, ATRX, and 1p/19q reach 86.7%, 92.0%, and 89.3%, respectively. The source code of this study can be viewed at https://github.com/whz847/MDPNet. CONCLUSION: The proposed framework exhibits significant advantages in integrating heterogeneous features from multi-modal MRI data. Experimental results from internal datasets further validate the model's superior generalizability and clinical utility in assisting glioma diagnosis, highlighting its potential for real-world clinical applications.

摘要

背景:胶质瘤是人类最致命的脑肿瘤之一,其准确诊断对患者的治疗和预后至关重要。磁共振成像(MRI)因其非侵入性和临床可及性,已被广泛用于胶质瘤的诊断和研究。根据2021年世界卫生组织中枢神经系统肿瘤分类指南,胶质瘤亚型可通过异柠檬酸脱氢酶(IDH)、染色体1p/19q共缺失(1p/19q)和X连锁α地中海贫血/智力发育迟缓综合征(ATRX)基因的分子状态信息来确定。 方法:在本研究中,我们提出了一种双路径并行融合网络(MDPNet),旨在全面提取不同MRI模态的异构特征,同时预测IDH、1p/19q和ATRX的分子状态。为了减轻数据不平衡的影响,我们开发了一种跨基因特征共享分类器,并实现了自适应加权损失函数,显著提高了模型的预测性能。 结果:在本研究中,每个基因分类任务都被制定为一个二分类问题。在公共数据集上进行的实验表明,我们的方法在准确率、曲线下面积(AUC)、敏感性和特异性方面优于现有方法。IDH、ATRX和1p/19q的分类准确率分别达到86.7%、92.0%和89.3%。本研究的源代码可在https://github.com/whz847/MDPNet查看。 结论:所提出的框架在整合多模态MRI数据的异构特征方面具有显著优势。内部数据集的实验结果进一步验证了该模型在辅助胶质瘤诊断方面的卓越通用性和临床实用性,突出了其在实际临床应用中的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7e2/12127811/b47ff0af54f3/fonc-15-1574861-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7e2/12127811/6bc6c91e408d/fonc-15-1574861-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7e2/12127811/ad64dc9c18d4/fonc-15-1574861-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7e2/12127811/021fe0858ba9/fonc-15-1574861-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7e2/12127811/1aeb91e12b5c/fonc-15-1574861-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7e2/12127811/e013a5a2a754/fonc-15-1574861-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7e2/12127811/5594bf8946f5/fonc-15-1574861-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7e2/12127811/497a781820e0/fonc-15-1574861-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7e2/12127811/0b48f434c4f1/fonc-15-1574861-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7e2/12127811/b47ff0af54f3/fonc-15-1574861-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7e2/12127811/6bc6c91e408d/fonc-15-1574861-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7e2/12127811/ad64dc9c18d4/fonc-15-1574861-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7e2/12127811/021fe0858ba9/fonc-15-1574861-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7e2/12127811/1aeb91e12b5c/fonc-15-1574861-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7e2/12127811/e013a5a2a754/fonc-15-1574861-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7e2/12127811/5594bf8946f5/fonc-15-1574861-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7e2/12127811/497a781820e0/fonc-15-1574861-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7e2/12127811/0b48f434c4f1/fonc-15-1574861-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7e2/12127811/b47ff0af54f3/fonc-15-1574861-g009.jpg

相似文献

[1]
MDPNet: a dual-path parallel fusion network for multi-modal MRI glioma genotyping.

Front Oncol. 2025-5-19

[2]
RNA editing-based classification of diffuse gliomas: predicting isocitrate dehydrogenase mutation and chromosome 1p/19q codeletion.

BMC Bioinformatics. 2019-12-24

[3]
Multi-parametric Z-spectral MRI may have a good performance for glioma stratification in clinical patients.

Eur Radiol. 2022-1

[4]
MRI Scoring Systems for Predicting Isocitrate Dehydrogenase Mutation and Chromosome 1p/19q Codeletion in Adult-type Diffuse Glioma Lacking Contrast Enhancement.

Radiology. 2024-5

[5]
Radiomics-Based Method for Predicting the Glioma Subtype as Defined by Tumor Grade, IDH Mutation, and 1p/19q Codeletion.

Cancers (Basel). 2022-3-31

[6]
The Diagnostic Value of Conventional MRI and CT Features in the Identification of the IDH1-Mutant and 1p/19q Co-Deletion in WHO Grade II Gliomas.

Acad Radiol. 2021-7

[7]
The T2-FLAIR-mismatch sign as an imaging biomarker for IDH and 1p/19q status in diffuse low-grade gliomas: a systematic review with a Bayesian approach to evaluation of diagnostic test performance.

Neurosurg Focus. 2019-12-1

[8]
Adult infiltrating gliomas with WHO 2016 integrated diagnosis: additional prognostic roles of ATRX and TERT.

Acta Neuropathol. 2017-6

[9]
Impact of signal intensity normalization of MRI on the generalizability of radiomic-based prediction of molecular glioma subtypes.

Eur Radiol. 2024-4

[10]
Predicting 1p/19q codeletion status using diffusion-, susceptibility-, perfusion-weighted, and conventional MRI in IDH-mutant lower-grade gliomas.

Acta Radiol. 2021-12

本文引用的文献

[1]
Deep learning-based postoperative glioblastoma segmentation and extent of resection evaluation: Development, external validation, and model comparison.

Neurooncol Adv. 2024-11-16

[2]
Deep Learning for MRI Segmentation and Molecular Subtyping in Glioblastoma: Critical Aspects from an Emerging Field.

Biomedicines. 2024-8-16

[3]
Multi-task Model for Glioma Segmentation and Isocitrate Dehydrogenase Status Prediction Using Global and Local Features.

Annu Int Conf IEEE Eng Med Biol Soc. 2023-7

[4]
Evaluation of chromosome 1p/19q deletion by Fluorescence in Situ Hybridization (FISH) as prognostic factors in malignant glioma patients on treatment with alkylating chemotherapy.

Cancer Genet. 2023-11

[5]
Conventional and Advanced Imaging Techniques in Post-treatment Glioma Imaging.

Front Radiol. 2022-6-28

[6]
IDH wild-type lower-grade gliomas with glioblastoma molecular features: a systematic review and meta-analysis.

Brain Tumor Pathol. 2023-7

[7]
Prediction of Ki-67 labeling index, ATRX mutation, and MGMT promoter methylation status in IDH-mutant astrocytoma by morphological MRI, SWI, DWI, and DSC-PWI.

Eur Radiol. 2023-10

[8]
Multi-Modal Learning for Predicting the Genotype of Glioma.

IEEE Trans Med Imaging. 2023-11

[9]
Magnetic Resonance Imaging of Primary Adult Brain Tumors: State of the Art and Future Perspectives.

Biomedicines. 2023-1-26

[10]
An Attention-Guided CNN Framework for Segmentation and Grading of Glioma Using 3D MRI Scans.

IEEE/ACM Trans Comput Biol Bioinform. 2023

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索