Suppr超能文献

基于影像组学的方法预测由肿瘤分级、异柠檬酸脱氢酶(IDH)突变和1p/19q共缺失定义的胶质瘤亚型

Radiomics-Based Method for Predicting the Glioma Subtype as Defined by Tumor Grade, IDH Mutation, and 1p/19q Codeletion.

作者信息

Li Yingping, Ammari Samy, Lawrance Littisha, Quillent Arnaud, Assi Tarek, Lassau Nathalie, Chouzenoux Emilie

机构信息

Laboratoire d'Imagerie Biomédicale Multimodale Paris Saclay, BIOMAPS, UMR1281 Inserm, CEA, CNRS, Université Paris-Saclay, 94805 Villejuif, France.

Centre de Vision Numérique, Institut National de Recherche en Informatique et en Automatique (INRIA), Université Paris-Saclay, 91190 Gif-sur-Yvette, France.

出版信息

Cancers (Basel). 2022 Mar 31;14(7):1778. doi: 10.3390/cancers14071778.

Abstract

Gliomas are among the most common types of central nervous system (CNS) tumors. A prompt diagnosis of the glioma subtype is crucial to estimate the prognosis and personalize the treatment strategy. The objective of this study was to develop a radiomics pipeline based on the clinical Magnetic Resonance Imaging (MRI) scans to noninvasively predict the glioma subtype, as defined based on the tumor grade, isocitrate dehydrogenase (IDH) mutation status, and 1p/19q codeletion status. A total of 212 patients from the public retrospective The Cancer Genome Atlas Low Grade Glioma (TCGA-LGG) and The Cancer Genome Atlas Glioblastoma Multiforme (TCGA-GBM) datasets were used for the experiments and analyses. Different settings in the radiomics pipeline were investigated to improve the classification, including the Z-score normalization, the feature extraction strategy, the image filter applied to the MRI images, the introduction of clinical information, ComBat harmonization, the classifier chain strategy, etc. Based on numerous experiments, we finally reached an optimal pipeline for classifying the glioma tumors. We then tested this final radiomics pipeline on the hold-out test data with 51 randomly sampled random seeds for reliable and robust conclusions. The results showed that, after tuning the radiomics pipeline, the mean AUC improved from 0.8935 (±0.0351) to 0.9319 (±0.0386), from 0.8676 (±0.0421) to 0.9283 (±0.0333), and from 0.6473 (±0.1074) to 0.8196 (±0.0702) in the test data for predicting the tumor grade, IDH mutation, and 1p/19q codeletion status, respectively. The mean accuracy for predicting the five glioma subtypes also improved from 0.5772 (±0.0816) to 0.6716 (±0.0655). Finally, we analyzed the characteristics of the radiomic features that best distinguished the glioma grade, the IDH mutation, and the 1p/19q codeletion status, respectively. Apart from the promising prediction of the glioma subtype, this study also provides a better understanding of the radiomics model development and interpretability. The results in this paper are replicable with our python codes publicly available in github.

摘要

神经胶质瘤是中枢神经系统(CNS)肿瘤中最常见的类型之一。快速诊断神经胶质瘤亚型对于评估预后和制定个性化治疗策略至关重要。本研究的目的是基于临床磁共振成像(MRI)扫描开发一种放射组学流程,以无创地预测神经胶质瘤亚型,该亚型根据肿瘤分级、异柠檬酸脱氢酶(IDH)突变状态和1p/19q共缺失状态来定义。来自公开的回顾性癌症基因组图谱低级别神经胶质瘤(TCGA-LGG)和癌症基因组图谱多形性胶质母细胞瘤(TCGA-GBM)数据集的总共212名患者被用于实验和分析。研究了放射组学流程中的不同设置以改进分类,包括Z分数标准化、特征提取策略、应用于MRI图像的图像滤波器、临床信息的引入、ComBat归一化、分类器链策略等。基于大量实验,我们最终得出了一个用于对神经胶质瘤肿瘤进行分类的最佳流程。然后,我们在留出测试数据上使用51个随机采样的随机种子对这个最终的放射组学流程进行测试,以得出可靠和稳健的结论。结果表明,在调整放射组学流程后,预测肿瘤分级、IDH突变和1p/19q共缺失状态的测试数据中的平均AUC分别从0.8935(±0.0351)提高到0.9319(±0.0386),从0.8676(±0.0421)提高到0.9283(±0.0333),以及从0.6473(±0.1074)提高到0.8196(±0.0702)。预测五种神经胶质瘤亚型的平均准确率也从0.5772(±0.0816)提高到0.6716(±0.0655)。最后,我们分别分析了最能区分神经胶质瘤分级、IDH突变和1p/19q共缺失状态的放射组学特征的特点。除了对神经胶质瘤亚型有前景的预测外,本研究还提供了对放射组学模型开发和可解释性更好的理解。本文的结果可以用我们在github上公开提供的python代码进行复现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9231/8997070/1f924a42746c/cancers-14-01778-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验