文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于深度学习的术后胶质母细胞瘤分割及切除范围评估:开发、外部验证和模型比较。

Deep learning-based postoperative glioblastoma segmentation and extent of resection evaluation: Development, external validation, and model comparison.

作者信息

Cepeda Santiago, Romero Roberto, Luque Lidia, García-Pérez Daniel, Blasco Guillermo, Luppino Luigi Tommaso, Kuttner Samuel, Esteban-Sinovas Olga, Arrese Ignacio, Solheim Ole, Eikenes Live, Karlberg Anna, Pérez-Núñez Ángel, Zanier Olivier, Serra Carlo, Staartjes Victor E, Bianconi Andrea, Rossi Luca Francesco, Garbossa Diego, Escudero Trinidad, Hornero Roberto, Sarabia Rosario

机构信息

Department of Neurosurgery, Río Hortega University Hospital, Valladolid, Spain.

Center for Biomedical Research in Network of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Valladolid, Spain.

出版信息

Neurooncol Adv. 2024 Nov 16;6(1):vdae199. doi: 10.1093/noajnl/vdae199. eCollection 2024 Jan-Dec.


DOI:10.1093/noajnl/vdae199
PMID:39659831
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11631186/
Abstract

BACKGROUND: The pursuit of automated methods to assess the extent of resection (EOR) in glioblastomas is challenging, requiring precise measurement of residual tumor volume. Many algorithms focus on preoperative scans, making them unsuitable for postoperative studies. Our objective was to develop a deep learning-based model for postoperative segmentation using magnetic resonance imaging (MRI). We also compared our model's performance with other available algorithms. METHODS: To develop the segmentation model, a training cohort from 3 research institutions and 3 public databases was used. Multiparametric MRI scans with ground truth labels for contrast-enhancing tumor (ET), edema, and surgical cavity, served as training data. The models were trained using MONAI and nnU-Net frameworks. Comparisons were made with currently available segmentation models using an external cohort from a research institution and a public database. Additionally, the model's ability to classify EOR was evaluated using the RANO-Resect classification system. To further validate our best-trained model, an additional independent cohort was used. RESULTS: The study included 586 scans: 395 for model training, 52 for model comparison, and 139 scans for independent validation. The nnU-Net framework produced the best model with median Dice scores of 0.81 for contrast ET, 0.77 for edema, and 0.81 for surgical cavities. Our best-trained model classified patients into maximal and submaximal resection categories with 96% accuracy in the model comparison dataset and 84% in the independent validation cohort. CONCLUSIONS: Our nnU-Net-based model outperformed other algorithms in both segmentation and EOR classification tasks, providing a freely accessible tool with promising clinical applicability.

摘要

背景:寻求用于评估胶质母细胞瘤切除范围(EOR)的自动化方法具有挑战性,需要精确测量残余肿瘤体积。许多算法专注于术前扫描,使其不适用于术后研究。我们的目标是开发一种基于深度学习的模型,用于使用磁共振成像(MRI)进行术后分割。我们还将我们模型的性能与其他可用算法进行了比较。 方法:为了开发分割模型,使用了来自3个研究机构和3个公共数据库的训练队列。具有用于增强对比肿瘤(ET)、水肿和手术腔的真实标签的多参数MRI扫描用作训练数据。使用MONAI和nnU-Net框架对模型进行训练。使用来自一个研究机构和一个公共数据库的外部队列与当前可用的分割模型进行比较。此外,使用RANO-Resect分类系统评估模型对EOR进行分类的能力。为了进一步验证我们训练最佳的模型,使用了一个额外的独立队列。 结果:该研究包括586次扫描:395次用于模型训练,52次用于模型比较,139次扫描用于独立验证。nnU-Net框架产生了最佳模型,对比ET的中位骰子分数为0.81,水肿为0.77,手术腔为0.81。我们训练最佳的模型在模型比较数据集中将患者分类为最大切除和次最大切除类别,准确率为96%,在独立验证队列中为84%。 结论:我们基于nnU-Net的模型在分割和EOR分类任务中均优于其他算法,提供了一个具有良好临床适用性的免费可用工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8306/11631186/a663bf801890/vdae199_fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8306/11631186/6b8f2a6cfdb2/vdae199_fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8306/11631186/a663bf801890/vdae199_fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8306/11631186/6b8f2a6cfdb2/vdae199_fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8306/11631186/a663bf801890/vdae199_fig2.jpg

相似文献

[1]
Deep learning-based postoperative glioblastoma segmentation and extent of resection evaluation: Development, external validation, and model comparison.

Neurooncol Adv. 2024-11-16

[2]
Standardized evaluation of the extent of resection in glioblastoma with automated early post-operative segmentation.

Front Radiol. 2024-5-22

[3]
Brain tumor segmentation and detection in MRI using convolutional neural networks and VGG16.

Cancer Biomark. 2025-3

[4]
Training and Comparison of nnU-Net and DeepMedic Methods for Autosegmentation of Pediatric Brain Tumors.

AJNR Am J Neuroradiol. 2024-8-9

[5]
Fully automatic segmentation of craniomaxillofacial CT scans for computer-assisted orthognathic surgery planning using the nnU-Net framework.

Eur Radiol. 2022-6

[6]
Fully Automated MRI Segmentation and Volumetric Measurement of Intracranial Meningioma Using Deep Learning.

J Magn Reson Imaging. 2023-3

[7]
nnU-Net-based Segmentation of Tumor Subcompartments in Pediatric Medulloblastoma Using Multiparametric MRI: A Multi-institutional Study.

Radiol Artif Intell. 2024-9

[8]
Development and validation of a deep learning-based framework for automated lung CT segmentation and acute respiratory distress syndrome prediction: a multicenter cohort study.

EClinicalMedicine. 2024-7-26

[9]
Optimizing Acute Stroke Segmentation on MRI Using Deep Learning: Self-Configuring Neural Networks Provide High Performance Using Only DWI Sequences.

J Imaging Inform Med. 2025-4

[10]
Extended Technical and Clinical Validation of Deep Learning-Based Brainstem Segmentation for Application in Neurodegenerative Diseases.

Hum Brain Mapp. 2025-2-15

引用本文的文献

[1]
A Review on Deep Learning Methods for Glioma Segmentation, Limitations, and Future Perspectives.

J Imaging. 2025-8-11

[2]
RANO 2.0: critical updates and practical considerations for radiological assessment in neuro-oncology.

Jpn J Radiol. 2025-6-30

[3]
Development and validation of a deep learning algorithm for discriminating glioma recurrence from radiation necrosis on MRI.

Front Oncol. 2025-6-6

[4]
BrainTumNet: multi-task deep learning framework for brain tumor segmentation and classification using adaptive masked transformers.

Front Oncol. 2025-5-20

[5]
MDPNet: a dual-path parallel fusion network for multi-modal MRI glioma genotyping.

Front Oncol. 2025-5-19

本文引用的文献

[1]
Standardized evaluation of the extent of resection in glioblastoma with automated early post-operative segmentation.

Front Radiol. 2024-5-22

[2]
A Deep Learning Approach for Automatic Segmentation during Daily MRI-Linac Radiotherapy of Glioblastoma.

Cancers (Basel). 2023-10-31

[3]
Segmentation of glioblastomas in early post-operative multi-modal MRI with deep neural networks.

Sci Rep. 2023-11-2

[4]
Deep learning-based algorithm for postoperative glioblastoma MRI segmentation: a promising new tool for tumor burden assessment.

Brain Inform. 2023-10-6

[5]
Raidionics: an open software for pre- and postoperative central nervous system tumor segmentation and standardized reporting.

Sci Rep. 2023-9-20

[6]
USE-Evaluator: Performance metrics for medical image segmentation models supervised by uncertain, small or empty reference annotations in neuroimaging.

Med Image Anal. 2023-12

[7]
A Fully Automated Post-Surgical Brain Tumor Segmentation Model for Radiation Treatment Planning and Longitudinal Tracking.

Cancers (Basel). 2023-8-3

[8]
Timing of Early Postoperative MRI following Primary Glioblastoma Surgery-A Retrospective Study of Contrast Enhancements in 311 Patients.

Diagnostics (Basel). 2023-2-20

[9]
Deep learning automates bidimensional and volumetric tumor burden measurement from MRI in pre- and post-operative glioblastoma patients.

Comput Biol Med. 2023-3

[10]
NS-HGlio: A generalizable and repeatable HGG segmentation and volumetric measurement AI algorithm for the longitudinal MRI assessment to inform RANO in trials and clinics.

Neurooncol Adv. 2022-12-20

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索