Suppr超能文献

用于患者运动被动补偿的头戴式手术机器人。

Head-Mounting Surgical Robots for Passive Compensation of Patient Motion.

作者信息

Posselli Nicholas R, Wellborn Patrick S, Bernstein Paul S, Webster Robert J, Abbott Jake J

机构信息

Department of Mechanical Engineering and the Robotics Center, University of Utah, Salt Lake City, UT, USA.

Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA.

出版信息

J Med Robot Res. 2024 Mar-Jun;9(1-2). doi: 10.1142/s2424905x2350006x. Epub 2024 Feb 19.

Abstract

A variety of robot-assisted surgical systems have been proposed to improve precision in the most challenging eye surgeries. However, little attention has been paid to patient motion due to breathing, snoring, talking, and other events that are common during eye surgery. This is problematic because patient motion is typically relative to a grounded surgical robot. In this paper, we characterize the benefits of a new paradigm in which robots are mounted semirigidly and noninvasively to the patient's head. This paradigm utilizes compact high-precision telerobotic systems that have been designed for this use. We present an initial design concept focused on eye surgery, and demonstrate an order-of-magnitude improvement of within-breathing-cycle motion relative to the robot compared to a pillow rest, with an optional head strap, which is the current standard of care, while essentially eliminating gross relative motion. We conduct a human-subjects study to quantify the relative motion that remains. Finally, we present an alternative design concept that leaves the patient's face unobstructed, which may be of interest for other kinds of surgery as well.

摘要

人们已经提出了多种机器人辅助手术系统,以提高最具挑战性的眼部手术的精度。然而,由于呼吸、打鼾、说话以及眼部手术中常见的其他情况引起的患者运动却很少受到关注。这是个问题,因为患者的运动通常相对于固定在地面的手术机器人。在本文中,我们描述了一种新范式的优势,即机器人以半刚性且无创的方式安装在患者头部。这种范式采用了为此用途设计的紧凑型高精度远程机器人系统。我们提出了一个专注于眼部手术的初始设计概念,并证明相对于使用当前护理标准的带可选头带的枕垫支撑,在呼吸周期内相对于机器人的运动有了一个数量级的改善,同时基本消除了明显的相对运动。我们进行了一项人体研究以量化剩余的相对运动。最后,我们提出了另一种设计概念,该概念不会遮挡患者面部,这对于其他类型的手术可能也有意义。

相似文献

1
Head-Mounting Surgical Robots for Passive Compensation of Patient Motion.
J Med Robot Res. 2024 Mar-Jun;9(1-2). doi: 10.1142/s2424905x2350006x. Epub 2024 Feb 19.
2
3
Head-mounted surgical robots are an enabling technology for subretinal injections.
Sci Robot. 2025 Feb 19;10(99):eadp7700. doi: 10.1126/scirobotics.adp7700.
4
The introduction of a new robot for assistance in ophthalmic surgery.
Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:5682-5. doi: 10.1109/EMBC.2013.6610840.
5
Spotlight-based 3D Instrument Guidance for Autonomous Task in Robot-assisted Retinal Surgery.
IEEE Robot Autom Lett. 2021 Oct;6(4):7750-7757. doi: 10.1109/lra.2021.3100937. Epub 2021 Jul 30.
6
Performance Analysis of a Head and Eye Motion-Based Control Interface for Assistive Robots.
Sensors (Basel). 2020 Dec 14;20(24):7162. doi: 10.3390/s20247162.
7
Motion compensated controller for a tendon-sheath-driven flexible endoscopic robot.
Int J Med Robot. 2017 Mar;13(1). doi: 10.1002/rcs.1747. Epub 2016 Apr 4.
8
Research on a New Rehabilitation Robot for Balance Disorders.
IEEE Trans Neural Syst Rehabil Eng. 2023;31:3927-3936. doi: 10.1109/TNSRE.2023.3312692. Epub 2023 Oct 16.
10
Open core control software for surgical robots.
Int J Comput Assist Radiol Surg. 2010 May;5(3):211-20. doi: 10.1007/s11548-009-0388-9. Epub 2009 Jul 28.

本文引用的文献

1
Robotic Assistance for Intraocular Microsurgery: Challenges and Perspectives.
Proc IEEE Inst Electr Electron Eng. 2022 Jul;110(7):893-908. doi: 10.1109/JPROC.2022.3169466. Epub 2022 May 9.
2
Randomised controlled trial on robot-assisted versus manual surgery for pucker peeling.
Clin Exp Ophthalmol. 2022 Dec;50(9):1057-1064. doi: 10.1111/ceo.14174. Epub 2022 Oct 17.
3
Targeting Epilepsy Through the Foremen Ovale: How Many Helical Needles are Needed?
Ann Biomed Eng. 2022 May;50(5):499-506. doi: 10.1007/s10439-022-02929-w. Epub 2022 Mar 4.
4
First-in-Human Robot-Assisted Subretinal Drug Delivery Under Local Anesthesia.
Am J Ophthalmol. 2022 May;237:104-113. doi: 10.1016/j.ajo.2021.11.011. Epub 2021 Nov 14.
5
Injection pressure levels for creating blebs during subretinal gene therapy.
Gene Ther. 2022 Nov;29(10-11):601-607. doi: 10.1038/s41434-021-00294-2. Epub 2021 Sep 28.
6
Monocular Vision-Based Retinal Membrane Peeling With a Handheld Robot.
J Med Device. 2021 Sep 1;15(3):031014. doi: 10.1115/1.4051686. Epub 2021 Jul 27.
7
Adaptive Control Improves Sclera Force Safety in Robot-Assisted Eye Surgery: A Clinical Study.
IEEE Trans Biomed Eng. 2021 Nov;68(11):3356-3365. doi: 10.1109/TBME.2021.3071135. Epub 2021 Oct 19.
8
Robotic Ear Surgery.
Otolaryngol Clin North Am. 2020 Dec;53(6):1065-1075. doi: 10.1016/j.otc.2020.07.014.
9
Phase I trial on robot assisted retinal vein cannulation with ocriplasmin infusion for central retinal vein occlusion.
Acta Ophthalmol. 2021 Feb;99(1):90-96. doi: 10.1111/aos.14480. Epub 2020 Jul 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验