Han Yuqiao, Routray Arpita, Adeghate Jennifer O, MacLachlan Robert A, Martel Joseph N, Riviere Cameron N
Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213.
Robotics Institute, Carnegie Mellon University, Pittsburgh, PA 15213.
J Med Device. 2021 Sep 1;15(3):031014. doi: 10.1115/1.4051686. Epub 2021 Jul 27.
Retinal membrane peeling requires delicate manipulation. The presence of the surgeon's physiological tremor, the high variability and often low quality of the ophthalmic image, and excessive forces make the tasks more challenging. Preventing unintended movement caused by tremor and unintentional forces can reduce membrane injury. With the use of an actively stabilized handheld robot, we employ a monocular camera-based surface reconstruction method to estimate the retinal plane and we propose the use of a virtual fixture with the application of a hard stop and motion scaling to improve control of the tool tip during delaminating in a laboratory simulation of retinal membrane peeling. A hard stop helps to limit downward force exerted on the surface. Motion scaling also improves the user's control of contact force when delaminating. We demonstrate a reduction of maximum force and maximum surface-penetration distance from the estimated retinal plane using the proposed technique.
视网膜膜剥离需要精细操作。外科医生的生理震颤、眼科图像的高度变异性和通常较低的质量以及过大的力使得这些任务更具挑战性。防止由震颤和意外力引起的意外移动可以减少膜损伤。通过使用主动稳定的手持机器人,我们采用基于单目相机的表面重建方法来估计视网膜平面,并提出在视网膜膜剥离的实验室模拟中使用带有硬限位和运动缩放的虚拟夹具,以改善分层过程中工具尖端的控制。硬限位有助于限制施加在表面上的向下力。运动缩放还改善了用户在分层时对接触力的控制。我们使用所提出的技术证明了从估计的视网膜平面起最大力和最大表面穿透距离的减少。