Suppr超能文献

罗汉松属植物的花粉形态、深度学习、系统发育学以及环境适应性的演化

Pollen morphology, deep learning, phylogenetics, and the evolution of environmental adaptations in Podocarpus.

作者信息

Adaimé Marc-Élie, Urban Michael A, Kong Shu, Jaramillo Carlos, Punyasena Surangi W

机构信息

Department of Plant Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.

Department of Biology, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada.

出版信息

New Phytol. 2025 Aug;247(3):1460-1473. doi: 10.1111/nph.70250. Epub 2025 Jun 3.

Abstract

Podocarpus pollen morphology is shaped by both phylogenetic history and the environment. We analyzed the relationship between pollen traits quantified using deep learning and environmental factors within a comparative phylogenetic framework. We investigated the influence of mean annual temperature, annual precipitation, altitude, and solar radiation in driving morphological change. We used trait-environment regression models to infer the temperature tolerances of 31 Neotropical Podocarpidites fossils. Ancestral state reconstructions were applied to the Podocarpus phylogeny with and without the inclusion of fossils. Our results show that temperature and solar radiation influence pollen morphology, with thermal stress driving an increase in pollen size and higher ultraviolet B radiation selecting for thicker corpus walls. Fossil temperature tolerances inferred from trait-environment models aligned with paleotemperature estimates from global paleoclimate models. Incorporating fossils into ancestral state reconstructions revealed that early ancestral Podocarpus lineages were likely adapted to warm climates, with cool-temperature tolerance evolving independently in high-latitude and high-altitude species. Our results highlight the importance of deep learning-derived features in advancing our understanding of plant environmental adaptations over evolutionary timescales. Deep learning allows us to quantify subtle interspecific differences in pollen morphology and link these traits to environmental preferences through statistical and phylogenetic analyses.

摘要

罗汉松花粉形态受系统发育历史和环境的共同影响。我们在比较系统发育框架内分析了利用深度学习量化的花粉特征与环境因素之间的关系。我们研究了年平均温度、年降水量、海拔和太阳辐射对形态变化的影响。我们使用性状-环境回归模型推断31种新热带罗汉松科花粉化石的温度耐受性。在包含和不包含化石的情况下,将祖先状态重建应用于罗汉松系统发育。我们的结果表明,温度和太阳辐射影响花粉形态,热应激促使花粉尺寸增大,而较高的紫外线B辐射则选择了更厚的外壁。从性状-环境模型推断出的化石温度耐受性与全球古气候模型的古温度估计结果一致。将化石纳入祖先状态重建表明,早期罗汉松祖先谱系可能适应温暖气候,而低温耐受性在高纬度和高海拔物种中独立进化。我们的结果凸显了深度学习衍生特征在推进我们对植物在进化时间尺度上环境适应性理解方面的重要性。深度学习使我们能够量化花粉形态中细微的种间差异,并通过统计和系统发育分析将这些特征与环境偏好联系起来。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验