Brum Mauro, Oliveira-Junior Raimundo Cosme, Alves Luciana F, Agee Elizabeth, Pereira Luciano, Penha Deliane, Araujo Carina, Mayer Juliana L S, Pereira Moutinho Victor Hugo, Oliveira Rafael S, Stark Scott, Saleska Scott R
Department of Ecology and Evolutionary Biology, University of Arizona, 1041 E. Lowell St. Tucson, AZ 85721, USA.
Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555 boulevard de l'Université, Chicoutimi, Québec G7H 2B1, Canada.
Tree Physiol. 2025 Jul 1;45(7). doi: 10.1093/treephys/tpaf063.
Understanding trait coordination and trade-offs along the root-to-leaf hydraulic pathway is critical for assessing forest functioning, as these traits significantly impact ecosystem carbon allocation and water use. Here, we investigated the relationship between carbon and hydraulic traits in 11 Amazonian tree species distributed across vertically structured hydrological niches. Using a carbon-hydraulic framework, we tested the hypothesis that interspecific differences arise from the optimization of xylem hydraulic efficiency, reflecting how tropical trees balance water transport efficiency with the carbon costs of maintaining transport tissues across vertical canopy positions. Our results show that above-ground traits were largely explained by canopy position (vertical stratification), whereas below-ground carbon-hydraulic traits were predominantly influenced by interspecific differences. Upper canopy trees exhibited lower and less variable specific root length (SRL) than shallow-rooted understory trees, indicating divergent carbon allocation strategies. Thicker terminal roots had higher hydraulic conductivity (Ks) than finer roots, but Ks declined from roots to terminal branches in most species. Additionally, branch and leaf Ks increase with tree size, indicating greater hydraulic efficiency in larger canopy species. Below-ground, we presented evidence that an increase in SRL is linked to decreased hydraulic conductivity and is influenced by root diameter. Above-ground, branch and leaf hydraulic conductivity tend to be higher in species with higher wood density, which are also more prevalent in upper canopy layers. Together, our findings reveal a coordinated above- and below-ground carbon-hydraulic trait framework across Amazonian trees. Species that occupy different vertical above-ground hydrological niches in lowland Amazon forests exhibit different carbon allocation strategies, which helps explain variation in species dominance and resource use throughout the vertical forest profile.
了解从根系到叶片的水力途径中的性状协调和权衡对于评估森林功能至关重要,因为这些性状会显著影响生态系统的碳分配和水分利用。在这里,我们研究了分布在垂直结构水文生态位中的11种亚马逊树种的碳和水力性状之间的关系。使用碳-水力框架,我们检验了以下假设:种间差异源于木质部水力效率的优化,这反映了热带树木如何在水分运输效率与维持整个垂直冠层位置的运输组织的碳成本之间取得平衡。我们的结果表明,地上性状在很大程度上由冠层位置(垂直分层)解释,而地下碳-水力性状主要受种间差异影响。上层冠层树木的比根长(SRL)低于浅根的林下树木,且变化较小,这表明碳分配策略不同。较粗的末端根比细根具有更高的水力传导率(Ks),但在大多数物种中,Ks从根到末端分支逐渐下降。此外,分支和叶片的Ks随树木大小增加,表明较大冠层物种的水力效率更高。在地下,我们提供的证据表明,SRL的增加与水力传导率的降低有关,并且受根直径影响。在地上,木材密度较高的物种的分支和叶片水力传导率往往更高,这些物种在上层冠层中也更为普遍。总之,我们的研究结果揭示了亚马逊树木地上和地下碳-水力性状的协调框架。在低地亚马逊森林中占据不同垂直地上水文生态位的物种表现出不同的碳分配策略,这有助于解释整个垂直森林剖面中物种优势和资源利用的变化。