Kulik Heather J
Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.
J Chem Inf Model. 2025 Jun 23;65(12):6073-6088. doi: 10.1021/acs.jcim.5c00636. Epub 2025 Jun 3.
Chemical space exploration motivates the development of data-driven models that bypass explicit computation or experiment. Cost-efficient strategies include the concept of additivity via the many-body expansion that treats a molecule as the sum of its parts. In the context of transition metal chemistry, ligand-wise additivity has been established as a powerful tool to infer the properties of heteroleptic transition metal complexes (TMCs) from homoleptic TMCs to excellent accuracy, including spin-splitting, orbital energies, and reaction energies. Nevertheless, this framework is incompatible with anionic ligands because a stable homoleptic, and thus polyanionic, parent complex cannot be simulated readily. Here, I explore alternative approaches, first identifying the limits of stability of heteroleptic TMCs when successive Cl anions are added in representative complexes formed with neutral HO and CO ligands. I establish that expected linear relationships are preserved, albeit not as strongly as in complexes with neutral ligands. I propose data-efficient interpolation and extrapolation schemes for TMCs that achieve root-mean-square errors as low as 0.15-0.36 eV on HOMO/LUMO levels and gaps or ionization potentials and electron affinities and 4 kcal/mol on adiabatic spin-splitting energies for Fe(II) complexes. I show that this approach generalizes well across TMCs with 14 other 3d, 4d, and 5d metals. Finally, I extend this approach to predict properties of thousands of binary and ternary Fe(II) or Zn(II) complexes involving a single neutral ligand and up to two unique anionic ligands by leveraging a handful of calculations. I show how this interpolated space can be used to infer the limits of stable and valid complexes and to discover complexes with novel properties.
化学空间探索推动了数据驱动模型的发展,这些模型绕过了显式计算或实验。具有成本效益的策略包括通过多体展开的加和性概念,即将分子视为其各部分的总和。在过渡金属化学的背景下,配体加和性已被确立为一种强大的工具,能够以极高的精度从同配过渡金属配合物(TMCs)推断异配过渡金属配合物的性质,包括自旋分裂、轨道能量和反应能量。然而,该框架与阴离子配体不兼容,因为稳定的同配(即多阴离子)母体配合物难以轻易模拟。在此,我探索了替代方法,首先确定在由中性HO和CO配体形成的代表性配合物中连续添加Cl阴离子时异配TMCs的稳定性极限。我发现预期的线性关系得以保留,尽管不如在中性配体的配合物中那么强烈。我提出了针对TMCs的数据高效插值和外推方案,对于Fe(II)配合物,在HOMO/LUMO能级和能隙或电离势与电子亲和能上实现了低至0.15 - 0.36 eV的均方根误差,在绝热自旋分裂能上实现了4 kcal/mol的均方根误差。我表明这种方法在包含其他14种3d、4d和5d金属的TMCs中具有良好的通用性。最后,我通过少量计算将此方法扩展到预测数千种涉及单个中性配体和至多两个独特阴离子配体的二元和三元Fe(II)或Zn(II)配合物的性质。我展示了如何利用这个插值空间来推断稳定和有效配合物的极限,并发现具有新性质的配合物。